ترغب بنشر مسار تعليمي؟ اضغط هنا

GraphFederator: Federated Visual Analysis for Multi-party Graphs

70   0   0.0 ( 0 )
 نشر من قبل Dongming Han
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents GraphFederator, a novel approach to construct joint representations of multi-party graphs and supports privacy-preserving visual analysis of graphs. Inspired by the concept of federated learning, we reformulate the analysis of multi-party graphs into a decentralization process. The new federation framework consists of a shared module that is responsible for joint modeling and analysis, and a set of local modules that run on respective graph data. Specifically, we propose a federated graph representation model (FGRM) that is learned from encrypted characteristics of multi-party graphs in local modules. We also design multiple visualization views for joint visualization, exploration, and analysis of multi-party graphs. Experimental results with two datasets demonstrate the effectiveness of our approach.



قيم البحث

اقرأ أيضاً

We initiate the study of multi-party computation for classical functionalities (in the plain model) with security against malicious polynomial-time quantum adversaries. We observe that existing techniques readily give a polynomial-round protocol, but our main result is a construction of *constant-round* post-quantum multi-party computation. We assume mildly super-polynomial quantum hardness of learning with errors (LWE), and polynomial quantum hardness of an LWE-based circular security assumption. Along the way, we develop the following cryptographic primitives that may be of independent interest: 1. A spooky encryption scheme for relations computable by quantum circuits, from the quantum hardness of an LWE-based circular security assumption. This yields the first quantum multi-key fully-homomorphic encryption scheme with classical keys. 2. Constant-round zero-knowledge secure against multiple parallel quantum verifiers from spooky encryption for relations computable by quantum circuits. To enable this, we develop a new straight-line non-black-box simulation technique against *parallel* verifiers that does not clone the adversarys state. This forms the heart of our technical contribution and may also be relevant to the classical setting. 3. A constant-round post-quantum non-malleable commitment scheme, from the mildly super-polynomial quantum hardness of LWE.
Contextual bandits are online learners that, given an input, select an arm and receive a reward for that arm. They use the reward as a learning signal and aim to maximize the total reward over the inputs. Contextual bandits are commonly used to solve recommendation or ranking problems. This paper considers a learning setting in which multiple parties aim to train a contextual bandit together in a private way: the parties aim to maximize the total reward but do not want to share any of the relevant information they possess with the other parties. Specifically, multiple parties have access to (different) features that may benefit the learner but that cannot be shared with other parties. One of the parties pulls the arm but other parties may not learn which arm was pulled. One party receives the reward but the other parties may not learn the reward value. This paper develops a privacy-preserving multi-party contextual bandit for this learning setting by combining secure multi-party computation with a differentially private mechanism based on epsilon-greedy exploration.
In this work, we consider the problem of secure multi-party computation (MPC), consisting of $Gamma$ sources, each has access to a large private matrix, $N$ processing nodes or workers, and one data collector or master. The master is interested in th e result of a polynomial function of the input matrices. Each source sends a randomized functions of its matrix, called as its share, to each worker. The workers process their shares in interaction with each other, and send some results to the master such that it can derive the final result. There are several constraints: (1) each worker can store a function of each input matrix, with the size of $frac{1}{m}$ fraction of that input matrix, (2) up to $t$ of the workers, for some integer $t$, are adversary and may collude to gain information about the private inputs or can do malicious actions to make the final result incorrect. The objective is to design an MPC scheme with the minimum number the workers, called the recovery threshold, such that the final result is correct, workers learn no information about the input matrices, and the master learns nothing beyond the final result. In this paper, we propose an MPC scheme that achieves the recovery threshold of $3t+2m-1$ workers, which is order-wise less than the recovery threshold of the conventional methods. The challenge in dealing with this set up is that when nodes interact with each other, the malicious messages that adversarial nodes generate propagate through the system, and can mislead the honest nodes. To deal with this challenge, we design some subroutines that can detect erroneous messages, and correct or drop them.
87 - Nayana Das , Goutam Paul 2021
Quantum conference is a process of securely exchanging messages between three or more parties, using quantum resources. A Measurement Device Independent Quantum Dialogue (MDI-QD) protocol, which is secure against information leakage, has been propose d (Quantum Information Processing 16.12 (2017): 305) in 2017, is proven to be insecure against intercept-and-resend attack strategy. We first modify this protocol and generalize this MDI-QD to a three-party quantum conference and then to a multi-party quantum conference. We also propose a protocol for quantum multi-party XOR computation. None of these three protocols proposed here use entanglement as a resource and we prove the correctness and security of our proposed protocols.
Secure multi-party computation (MPC) allows parties to perform computations on data while keeping that data private. This capability has great potential for machine-learning applications: it facilitates training of machine-learning models on private data sets owned by different parties, evaluation of one partys private model using another partys private data, etc. Although a range of studies implement machine-learning models via secure MPC, such implementations are not yet mainstream. Adoption of secure MPC is hampered by the absence of flexible software frameworks that speak the language of machine-learning researchers and engineers. To foster adoption of secure MPC in machine learning, we present CrypTen: a software framework that exposes popular secure MPC primitives via abstractions that are common in modern machine-learning frameworks, such as tensor computations, automatic differentiation, and modular neural networks. This paper describes the design of CrypTen and measure its performance on state-of-the-art models for text classification, speech recognition, and image classification. Our benchmarks show that CrypTens GPU support and high-performance communication between (an arbitrary number of) parties allows it to perform efficient private evaluation of modern machine-learning models under a semi-honest threat model. For example, two parties using CrypTen can securely predict phonemes in speech recordings using Wav2Letter faster than real-time. We hope that CrypTen will spur adoption of secure MPC in the machine-learning community.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا