ﻻ يوجد ملخص باللغة العربية
This paper presents GraphFederator, a novel approach to construct joint representations of multi-party graphs and supports privacy-preserving visual analysis of graphs. Inspired by the concept of federated learning, we reformulate the analysis of multi-party graphs into a decentralization process. The new federation framework consists of a shared module that is responsible for joint modeling and analysis, and a set of local modules that run on respective graph data. Specifically, we propose a federated graph representation model (FGRM) that is learned from encrypted characteristics of multi-party graphs in local modules. We also design multiple visualization views for joint visualization, exploration, and analysis of multi-party graphs. Experimental results with two datasets demonstrate the effectiveness of our approach.
We initiate the study of multi-party computation for classical functionalities (in the plain model) with security against malicious polynomial-time quantum adversaries. We observe that existing techniques readily give a polynomial-round protocol, but
Contextual bandits are online learners that, given an input, select an arm and receive a reward for that arm. They use the reward as a learning signal and aim to maximize the total reward over the inputs. Contextual bandits are commonly used to solve
In this work, we consider the problem of secure multi-party computation (MPC), consisting of $Gamma$ sources, each has access to a large private matrix, $N$ processing nodes or workers, and one data collector or master. The master is interested in th
Quantum conference is a process of securely exchanging messages between three or more parties, using quantum resources. A Measurement Device Independent Quantum Dialogue (MDI-QD) protocol, which is secure against information leakage, has been propose
Secure multi-party computation (MPC) allows parties to perform computations on data while keeping that data private. This capability has great potential for machine-learning applications: it facilitates training of machine-learning models on private