ترغب بنشر مسار تعليمي؟ اضغط هنا

On the SAV-DG method for a class of fourth order gradient flows

185   0   0.0 ( 0 )
 نشر من قبل Peimeng Yin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For a class of fourth order gradient flow problems, integration of the scalar auxiliary variable (SAV) time discretization with the penalty-free discontinuous Galerkin (DG) spatial discretization leads to SAV-DG schemes. These schemes are linear and shown unconditionally energy stable. But the reduced linear systems are rather expensive to solve due to the dense coefficient matrices. In this paper, we provide a procedure to pre-evaluate the auxiliary variable in the piecewise polynomial space. As a result, the computational complexity of $O(mathcal{N}^2)$ reduces to $O(mathcal{N})$ when exploiting the conjugate gradient (CG) solver. This hybrid SAV-DG method is more efficient and able to deliver satisfactory results of high accuracy. This was also compared with solving the full augmented system of the SAV-DG schemes.



قيم البحث

اقرأ أيضاً

258 - Hailiang Liu , Peimeng Yin 2021
We present unconditionally energy stable Runge-Kutta (RK) discontinuous Galerkin (DG) schemes for solving a class of fourth order gradient flows. Our algorithm is geared toward arbitrarily high order approximations in both space and time, while energ y dissipation remains preserved without imposing any restriction on time steps and meshes. We achieve this in two steps. First, taking advantage of the penalty free DG method introduced by Liu and Yin [J Sci. Comput. 77:467--501, 2018] for spatial discretization, we reformulate an extended linearized ODE system by the energy quadratization (EQ) approach. Second, we apply an s-stage algebraically stable RK method for temporal discretization. The resulting fully discrete DG schemes are linear and unconditionally energy stable. In addition, we introduce a prediction-correction procedure to improve both the accuracy and stability of the scheme. We illustrate the effectiveness of the proposed schemes by numerical tests with benchmark problems.
We formulate a well-posedness and approximation theory for a class of generalised saddle point problems with a specific form of constraints. In this way we develop an approach to a class of fourth order elliptic partial differential equations with po int constraints using the idea of splitting into coupled second order equations. An approach is formulated using a penalty method to impose the constraints. Our main motivation is to treat certain fourth order equations involving the biharmonic operator and point Dirichlet constraints for example arising in the modelling of biomembranes on curved and flat surfaces but the approach may be applied more generally. The theory for well-posedness and approximation is presented in an abstract setting. Several examples are described together with some numerical experiments.
We present a methodology to construct efficient high-order in time accurate numerical schemes for a class of gradient flows with appropriate Lipschitz continuous nonlinearity. There are several ingredients to the strategy: the exponential time differ encing (ETD), the multi-step (MS) methods, the idea of stabilization, and the technique of interpolation. They are synthesized to develop a generic $k^{th}$ order in time efficient linear numerical scheme with the help of an artificial regularization term of the form $Atau^kfrac{partial}{partial t}mathcal{L}^{p(k)}u$ where $mathcal{L}$ is the positive definite linear part of the flow, $tau$ is the uniform time step-size. The exponent $p(k)$ is determined explicitly by the strength of the Lipschitz nonlinear term in relation to $mathcal{L}$ together with the desired temporal order of accuracy $k$. To validate our theoretical analysis, the thin film epitaxial growth without slope selection model is examined with a fourth-order ETD-MS discretization in time and Fourier pseudo-spectral in space discretization. Our numerical results on convergence and energy stability are in accordance with our theoretical results.
We formulate a well-posedness and approximation theory for a class of generalised saddle point problems. In this way we develop an approach to a class of fourth order elliptic partial differential equations using the idea of splitting into coupled se cond order equations. Our main motivation is to treat certain fourth order surface equations arising in the modelling of biomembranes but the approach may be applied more generally. In particular, we are interested in equations with non-smooth right hand sides and operators which have non-trivial kernels.The theory for well posedness and approximation is presented in an abstract setting. Several examples are described together with some numerical experiments.
A Morley-Wang-Xu (MWX) element method with a simply modified right hand side is proposed for a fourth order elliptic singular perturbation problem, in which the discrete bilinear form is standard as usual nonconforming finite element methods. The sha rp error analysis is given for this MWX element method. And the Nitsches technique is applied to the MXW element method to achieve the optimal convergence rate in the case of the boundary layers. An important feature of the MWX element method is solver-friendly. Based on a discrete Stokes complex in two dimensions, the MWX element method is decoupled into one Lagrange element method of Poisson equation, two Morley element methods of Poisson equation and one nonconforming $P_1$-$P_0$ element method of Brinkman problem, which implies efficient and robust solvers for the MWX element method. Some numerical examples are provided to verify the theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا