ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing charge anisotropies in metal compounds via high-purity x-ray polarimetry

419   0   0.0 ( 0 )
 نشر من قبل Ralf R\\\"ohlsberger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Linear polarization analysis of hard x-rays is employed to probe electronic anisotropies in metal-containing complexes with very high selectivity. We use the pronounced linear dichroism of nuclear resonant x-ray scattering to determine electric field gradients in an iron(II) containing compound as they evolve during a temperature-dependent high-spin/low-spin phase transition. This method constitutes a novel approach to analyze changes in the electronic structure of metal-containing molecules as function of external parameters or stimuli. The polarization selectivity of the technique allows us to monitor defect concentrations of electronic valence states across phase transitions. This opens new avenues to trace electronic changes and their precursors that are connected to structural and electronic dynamics in the class of metal compounds ranging from simple molecular solids to biological molecules.



قيم البحث

اقرأ أيضاً

High-brilliance synchrotron radiation sources have opened new avenues for X-ray polarization analysis that go far beyond conventional polarimetry in the optical domain. With linear X-ray polarizers in a crossed setting polarization extinction ratios down to 10$^{-10}$ can be achieved. This renders the method sensitive to probe tiniest optical anisotropies that would occur, for example, in strong-field QED due to vacuum birefringence and dichroism. Here we show that high-purity polarimetry can be employed to reveal electronic anisotropies in condensed matter systems with utmost sensitivity and spectral resolution. Taking CuO and La$_2$CuO$_4$ as benchmark systems, we present a full characterization of the polarization changes across the Cu K-absorption edge and their separation into dichroic and birefringent contributions. At diffraction-limited synchrotron radiation sources and X-ray lasers, where polarization extinction ratios of 10$^{-12}$ can be achieved, our method has the potential to assess birefringence and dichroism of the quantum vacuum in extreme electromagnetic fields.
We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low poer x-ray (bremsstrahlung) tube source, a spherically-bent crystal analyzer (SBCA), and an energy-resolving solid-state detector. This relatively in expensive, introductory level instrument achieves 1-eV energy resolution for photon energies of 5 keV to 10 keV while also dmeonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy (XES) comparable to those achived at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure (XANES), the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-powered line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10^6 to 10^7 photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.
89 - Guangxu Ju 2017
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The syst em includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
We present a study of charge transfer in Na-intercalated FeOCl and polyaniline-intercalated FeOCl using high-resolution x-ray absorption spectroscopy and resonant x-ray emission spectroscopy at the Fe-K edge. By comparing the experimental data with a b-initio simulations, we are able to unambiguously distinguish the spectral changes which appear due to intercalation into those of electronic origin and those of structural origin. For both systems, we find that about 25% of the Fe sites are reduced to Fe2+ via charge transfer between FeOCl and the intercalate. This is about twice as large as the Fe2+ fraction reported in studies using Mossbauer spectroscopy. This discrepancy is ascribed to the fact that the charge transfer occurs on the same time scale as the Mossbauer effect itself. Our result suggests that every intercalated atom or molecule is involved in the charge-transfer process, thus making this process a prerequisite for intercalation. The Fe2+ fraction is found to increase with pressure for polyaniline-FeOCl, hinting at an enhancement of the conductivity in the FeOCl intercalation compounds under pressure.
We report measurement of the valence-to-core (VTC) region of the K-shell x-ray emission spectra from several Zn and Fe inorganic compounds, and their critical comparison with several existing theoretical treatments. We find generally good agreement b etween the respective theories and experiment, and in particular find an important admixture of dipole and quadrupole character for Zn materials that is much weaker in Fe-based systems. These results on materials whose simple crystal structures should not, a prior, pose deep challenges to theory, will prove useful in guiding the further development of DFT and time-dependent DFT methods for VTC-XES predictions and their comparison to experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا