ﻻ يوجد ملخص باللغة العربية
Quantum criticality, as a fascinating quantum phenomenon, may provide significant advantages for quantum sensing. Here we propose a dynamic framework for quantum sensing with a family of Hamiltonians that undergo quantum phase transitions (QPT). By giving the formalism of the quantum Fisher information (QFI) for quantum sensing based on critical quantum dynamics, we demonstrate its divergent feature when approaching the critical point. We illustrate the basic principle and the details of experimental implementation using quantum Rabi model. The framework is applicable to a variety of examples and does not rely on the stringent requirement for particular state preparation or adiabatic evolution. It is expected to provide a route towards the implementation of criticality-enhanced quantum sensing.
Present protocols of criticality enhanced sensing with open quantum sensors assume direct measurement of the sensor and omit the radiation quanta emitted to the environment, thereby omitting potentially valuable information. Here we propose a protoco
Quantum resources can enhance the sensitivity of a device beyond the classical shot noise limit and, as a result, revolutionize the field of metrology through the development of quantum-enhanced sensors. In particular, plasmonic sensors, which are wi
We study the dynamic sensitivity of the quantum Rabi model, which exhibits quantum criticality in the finite-component-system case. This dynamic sensitivity can be detected by introducing an auxiliary two-level atom far-off-resonantly coupled to the
We use the quantum Fisher information (QFI) to diagnose a dynamical phase transition (DPT) in a closed quantum system, which is usually defined in terms of non-analytic behaviour of a time-averaged order parameter. Employing the Lipkin-Meshkov-Glick
We present a method of sensing AC magnetic fields. The method is based on the construction of a robust qubit by the application of continuous driving fields. Specifically, magnetic noise and power fluctuations of the driving fields do not operate wit