ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-infrared characterization of four massive stars in transition phases

60   0   0.0 ( 0 )
 نشر من قبل Yanina Roxana Cochetti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive stars typically undergo short-lived post-main sequence evolutionary phases with strong mass loss and occasional mass eruptions. Many of such massive stars in transition phases have been identified based on their dusty envelopes. The ejected material often veils the stellar photospheres so that the central stars cannot be assigned proper spectral types and evolutionary stages. The infrared spectral range has proved to be ideal for the classification of evolved massive stars and for the characterization of their environments. To improve our knowledge on the central stars of four such dust enshrouded objects: [GKF2010] MN 83, [GKF2010] MN 108, [GKF2010] MN 109, and [GKF2010] MN 112, we collect and present their first medium resolution K-band spectra in the $2.3,-,2.47,mu$m region and discuss the location of the stars in the JHK color-color diagram. We find that the emission-line spectra of both MN 83 and MN 112 show characteristics typically seen in Luminous Blue Variable (LBV) stars. In addition, we propose that the presence and strength of the newly reported Mg II lines might be used as a new complementary criterion to identify LBV candidates. The spectra of the other two objects imply that MN 108 is an O-type supergiant, whereas MN 109 could be an LBV candidate in its active phase. We derive lower limits for the reddening toward the stars and find that three of all de-reddened fall into the region of confirmed LBVs.



قيم البحث

اقرأ أيضاً

The advanced stages of several high-mass stars are characterized by episodic mass loss shed during phases of instability. Key for assigning these stars a proper evolutionary state is to assess the composition and geometry of their ejecta alongside th e stellar properties. We selected five hot LBV candidates in M33 to refine their classification, investigate their circumstellar environments and explore their evolutionary properties. Being accessible targets in the near-infrared, we conducted medium-resolution spectroscopy with GNIRS/GEMINI in the $K-$band to investigate their molecular circumstellar environments. Two stars were found to display CO emission, which was modeled to emerge from a circumstellar or circumbinary Keplerian disk/ring. The identification of the carbon isotope $^{13}$C and, for one of the two stars, a significantly low $^{12}$CO/$^{13}$CO ratio, implies an evolved stellar state. As both CO emission stars are highly luminous and hence do not undergo a red supergiant phase, we suggest that stripping processes and equatorial high-density ejecta due to fast rotation are responsible for the enrichment of the stellar surface with processed material from the core. A candidate B[e]SG displays an absorption CO profile, which may be attributed to a jet or stellar pulsations. The featureless infrared spectra of two stars suggest a low-density gas shell or dissipation of the molecule due to the ionizing temperature of the star. We propose spectroscopic monitoring of our targets to evaluate the stability of the CO molecule and assess the time-dependent dynamics of the circumstellar gas structures.
The presence of massive stars (MSs) in the region close to the Galactic Center (GC) poses several questions about their origin. The harsh environment of the GC favors specific formation scenarios, each of which should imprint characteristic kinematic features on the MSs. We present a 2D kinematic analysis of MSs in a GC region surrounding Sgr A* based on high-precision proper motions obtained with the Hubble Space Telescope. Thanks to a careful data reduction, well-measured bright stars in our proper-motion catalogs have errors better than 0.5 mas yr$^{-1}$. We discuss the absolute motion of the MSs in the field and their motion relative to Sgr A*, the Arches and the Quintuplet. For the majority of the MSs, we rule out any distance further than 3-4 kpc from Sgr A* using only kinematic arguments. If their membership to the GC is confirmed, most of the isolated MSs are likely not associated with either the Arches or Quintuplet clusters or Sgr A*. Only a few MSs have proper motions suggesting they are likely members of the Arches cluster, in agreement with previous spectroscopic results. Line-of-sight radial velocities and distances are required to shed further light on the origin of most of these massive objects. We also present an analysis of other fast-moving objects in the GC region, finding no clear excess of high-velocity escaping stars. We make our astro-photometric catalogs publicly available.
We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3-24 microns in the UBVIJHKs+IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant and luminous blue variable (LBV) stars are among the brightest infrared point sources in the Large Magellanic Cloud, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ~900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/Lo>=4) and the rare, dusty progenitors of the new class of optical transients (e.g. SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.
Context. The Vista Variables in the Via Lactea (VVV) near-infrared variability survey explores some of the most complex regions of the Milky Way bulge and disk in terms of high extinction and high crowding. Aims. We add a new wavelength dimension to the optical information available at the American Association of Variable Star Observers International Variable Star Index (VSX-AAVSO) catalogue to test the VVV survey near-infrared photometry to better characterise these objects. Methods. We cross-matched the VVV and the VSX-AAVSO catalogues along with Gaia Data Release 2 photometry and parallax. Results. We present a catalogue that includes accurate individual coordinates, near-infrared magnitudes (ZY JHKs), extinctions Aks, and distances based on Gaia parallaxes. We also show the near-infrared CMDs and spatial distributions for the different VSX types of variable stars, including important distance indicators, such as RR Lyrae, Cepheids, and Miras. By analysing the photometric flags in our catalogue, we found that about 20% of the stars with measured and verified variability are flagged as non-stellar sources, even when they are outside of the saturation and/or noise regimes. Additionally, we pair-matched our sample with the VIVA catalogue and found that more than half of our sources are missing from the VVV variability list, mostly due to observations with low signal-to-noise ratio or photometric problems with a low percentage due to failures in the selection process. Conclusions. Our results suggest that the current knowledge of the variability in the Galaxy is biased to nearby stars with low extinction. The present catalogue also provides the groundwork for characterising the results of future large variability surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time in the highly crowded and reddened regions of the Galactic plane, as well as follow-up campaigns for
188 - Hiroki Onozato 2019
Red clump (RC) stars are widely used as an excellent standard candle. To make them even better, it is important to know the dependence of their absolute magnitudes on age and metallicity. We observed star clusters in the Large Magellanic Cloud to fil l age and metallicity parameter space, which previous work has not observationally studied. We obtained the empirical relations of the age and metallicity dependence of absolute magnitudes $M_{J}$, $M_{H}$, and $M_{K_{S}}$, and colours $J - H$, $J - K_{S}$, and $H - K_{S}$ of RC stars, although the coefficients have large errors. Mean near-infrared magnitudes of the RC stars in the clusters show relatively strong dependence on age for young RC stars. The $J - K_{S}$ and $H - K_{S}$ colours show the nearly constant values of $0.528 pm 0.015$ and $0.047 pm 0.011$, respectively, at least within the ages of 1.1--3.2 Gyr and [Fe/H] of $-0.90$ to $-0.40$ dex. We also confirmed that the population effects of observational data are in good agreement with the model prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا