ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Hybrid Combining Design for Quantized Massive MIMO Systems

240   0   0.0 ( 0 )
 نشر من قبل Yalin Wang
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Both the power-dissipation and cost of massive multiple-input multiple-output (mMIMO) systems may be substantially reduced by using low-resolution analog-to-digital converters (LADCs) at the receivers. However, both the coarse quantization of LADCs and the inaccurate instantaneous channel state information (ICSI) degrade the performance of quantized mMIMO systems. To overcome these challenges, we propose a novel stochastic hybrid analog-digital combiner (SHC) scheme for adapting the hybrid combiner to the long-term statistics of the channel state information (SCSI). We seek to minimize the transmit power by jointly optimizing the SHC subject to average rate constraints. For the sake of solving the resultant nonconvex stochastic optimization problem, we develop a relaxed stochastic successive convex approximation (RSSCA) algorithm. Simulations are carried out to confirm the benefits of our proposed scheme over the benchmarkers.



قيم البحث

اقرأ أيضاً

We propose a novel randomized channel sparsifying hybrid precoding (RCSHP) design to reduce the signaling overhead of channel estimation and the hardware cost and power consumption at the base station (BS), in order to fully harvest benefits of frequ ency division duplex (FDD) massive multiple-input multiple-output (MIMO) systems. RCSHP allows time-sharing among multiple analog precoders, each serving a compatible user group. The analog precoder is adapted to the channel statistics to properly sparsify the channel for the associated user group, such that the resulting effective channel (product of channel and analog precoder) not only has enough spatial degrees of freedom (DoF) to serve this group of users, but also can be accurately estimated under the limited pilot budget. The digital precoder is adapted to the effective channel based on the duality theory to facilitate the power allocation and exploit the spatial multiplexing gain. We formulate the joint optimization of the time-sharing factors and the associated sets of analog precoders and power allocations as a general utility optimization problem, which considers the impact of effective channel estimation error on the system performance. Then we propose an efficient stochastic successive convex approximation algorithm to provably obtain Karush-Kuhn-Tucker (KKT) points of this problem.
92 - Wenyan Ma , Chenhao Qi 2019
In this paper, a framework of beamspace channel estimation in millimeter wave (mmWave) massive MIMO system is proposed. The framework includes the design of hybrid precoding and combining matrix as well as the search method for the largest entry of o ver-sampled beamspace receiving matrix. Then based on the framework, three channel estimation schemes including identity matrix approximation (IA)-based scheme, scattered zero off-diagonal (SZO)-based scheme and concentrated zero off-diagonal (CZO)-based scheme are proposed. These schemes together with the existing channel estimation schemes are compared in terms of computational complexity, estimation error and total time slots for channel training. Simulation results show that the proposed schemes outperform the existing schemes and can approach the performance of the ideal case. In particular, total time slots for channel training can be substantially reduced.
Terahertz (THz) communication is widely considered as a key enabler for future 6G wireless systems. However, THz links are subject to high propagation losses and inter-symbol interference due to the frequency selectivity of the channel. Massive multi ple-input multiple-output (MIMO) along with orthogonal frequency division multiplexing (OFDM) can be used to deal with these problems. Nevertheless, when the propagation delay across the base station (BS) antenna array exceeds the symbol period, the spatial response of the BS array varies across the OFDM subcarriers. This phenomenon, known as beam squint, renders narrowband combining approaches ineffective. Additionally, channel estimation becomes challenging in the absence of combining gain during the training stage. In this work, we address the channel estimation and hybrid combining problems in wideband THz massive MIMO with uniform planar arrays. Specifically, we first introduce a low-complexity beam squint mitigation scheme based on true-time-delay. Next, we propose a novel variant of the popular orthogonal matching pursuit (OMP) algorithm to accurately estimate the channel with low training overhead. Our channel estimation and hybrid combining schemes are analyzed both theoretically and numerically. Moreover, the proposed schemes are extended to the multi-antenna user case. Simulation results are provided showcasing the performance gains offered by our design compared to standard narrowband combining and OMP-based channel estimation.
Millimeter-wave (mmWave) technology is one of the most promising candidates for future wireless communication systems as it can offer large underutilized bandwidths and eases the implementation of large antenna arrays which are required to help overc ome the severe signal attenuation that occurs at these frequencies. To reduce the high cost and power consumption of a fully digital mmWave precoder and combiner, hybrid analog/digital designs based on analog phase shifters are often adopted. In this work we derive an iterative algorithm for the hybrid precoding and combining design for spatial multiplexing in mmWave massive multiple-input multiple-output (MIMO) systems. To cope with the difficulty of handling the hardware constraint imposed by the analog phase shifters we use the alternating direction method of the multipliers (ADMM) to split the hybrid design problem into a sequence of smaller subproblems. This results in an iterative algorithm where the design of the analog precoder/combiner consists of a closed form solution followed by a simple projection over the set of matrices with equal magnitude elements. It is initially developed for the fully-connected structure and then extended to the partially-connected architecture which allows simpler hardware implementation. Furthermore, to cope with the more likely wideband scenarios where the channel is frequency selective, we also extend the algorithm to an orthogonal frequency division multiplexing (OFDM) based mmWave system. Simulation results in different scenarios show that the proposed design algorithms are capable of achieving performances close to the optimal fully digital solution and can work with a broad range of configuration of antennas, RF chains and data streams.
While mmWave bands provide a large bandwidth for mobile broadband services, they suffer from severe path loss and shadowing. Multiple-antenna techniques such as beamforming (BF) can be applied to compensate the signal attenuation. We consider a speci al case of hybrid BF called per-stream hybrid BF (PSHBF) which is easier to implement than the general hybrid BF because it circumvents the need for joint analog-digital beamformer optimization. Employing BF at the base station enables the transmission of multiple data streams to several users in the same resource block. In this paper, we provide an offline study of proportional fair multi-user scheduling in a mmWave system with PSHBF to understand the impact of various system parameters on the performance. We formulate multi-user scheduling as an optimization problem. To tackle the non-convexity, we provide a feasible solution and show through numerical examples that the performance of the provided solution is very close to an upper-bound. Using this framework, we provide extensive numerical investigations revealing several engineering insights.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا