Polarization amplification by spin-doping in nanomagnetic/graphene hybrid systems


الملخص بالإنكليزية

The generation of non-equilibrium electron spin polarization, spin transport, and spin detection are fundamental in many quantum devices. We demonstrate that a lattice of magnetic nanodots enhances the electron spin polarization in monolayer graphene via carrier exchange. We probed the spin polarization through a resistively-detected variant of electron spin resonance (ESR) and observed resonance amplification mediated by the presence of the nanodots. Each nanodot locally injects a surplus of spin-polarized carriers into the graphene, and the ensemble of all spin hot spots generates a non-equilibrium electron spin polarization in the graphene layer at macroscopic lengths. This occurs whenever the interdot distance is comparable or smaller than the spin diffusion length.

تحميل البحث