ترغب بنشر مسار تعليمي؟ اضغط هنا

iCaps: An Interpretable Classifier via Disentangled Capsule Networks

113   0   0.0 ( 0 )
 نشر من قبل Dahuin Jung
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an interpretable Capsule Network, iCaps, for image classification. A capsule is a group of neurons nested inside each layer, and the one in the last layer is called a class capsule, which is a vector whose norm indicates a predicted probability for the class. Using the class capsule, existing Capsule Networks already provide some level of interpretability. However, there are two limitations which degrade its interpretability: 1) the class capsule also includes classification-irrelevant information, and 2) entities represented by the class capsule overlap. In this work, we address these two limitations using a novel class-supervised disentanglement algorithm and an additional regularizer, respectively. Through quantitative and qualitative evaluations on three datasets, we demonstrate that the resulting classifier, iCaps, provides a prediction along with clear rationales behind it with no performance degradation.



قيم البحث

اقرأ أيضاً

70 - Jindong Gu , Volker Tresp 2020
Capsule Networks, as alternatives to Convolutional Neural Networks, have been proposed to recognize objects from images. The current literature demonstrates many advantages of CapsNets over CNNs. However, how to create explanations for individual cla ssifications of CapsNets has not been well explored. The widely used saliency methods are mainly proposed for explaining CNN-based classifications; they create saliency map explanations by combining activation values and the corresponding gradients, e.g., Grad-CAM. These saliency methods require a specific architecture of the underlying classifiers and cannot be trivially applied to CapsNets due to the iterative routing mechanism therein. To overcome the lack of interpretability, we can either propose new post-hoc interpretation methods for CapsNets or modifying the model to have build-in explanations. In this work, we explore the latter. Specifically, we propose interpretable Graph Capsule Networks (GraCapsNets), where we replace the routing part with a multi-head attention-based Graph Pooling approach. In the proposed model, individual classification explanations can be created effectively and efficiently. Our model also demonstrates some unexpected benefits, even though it replaces the fundamental part of CapsNets. Our GraCapsNets achieve better classification performance with fewer parameters and better adversarial robustness, when compared to CapsNets. Besides, GraCapsNets also keep other advantages of CapsNets, namely, disentangled representations and affine transformation robustness.
89 - Yiqiu Shen , Nan Wu , Jason Phang 2020
Medical images differ from natural images in significantly higher resolutions and smaller regions of interest. Because of these differences, neural network architectures that work well for natural images might not be applicable to medical image analy sis. In this work, we extend the globally-aware multiple instance classifier, a framework we proposed to address these unique properties of medical images. This model first uses a low-capacity, yet memory-efficient, network on the whole image to identify the most informative regions. It then applies another higher-capacity network to collect details from chosen regions. Finally, it employs a fusion module that aggregates global and local information to make a final prediction. While existing methods often require lesion segmentation during training, our model is trained with only image-level labels and can generate pixel-level saliency maps indicating possible malignant findings. We apply the model to screening mammography interpretation: predicting the presence or absence of benign and malignant lesions. On the NYU Breast Cancer Screening Dataset, consisting of more than one million images, our model achieves an AUC of 0.93 in classifying breasts with malignant findings, outperforming ResNet-34 and Faster R-CNN. Compared to ResNet-34, our model is 4.1x faster for inference while using 78.4% less GPU memory. Furthermore, we demonstrate, in a reader study, that our model surpasses radiologist-level AUC by a margin of 0.11. The proposed model is available online: https://github.com/nyukat/GMIC.
Capturing interpretable variations has long been one of the goals in disentanglement learning. However, unlike the independence assumption, interpretability has rarely been exploited to encourage disentanglement in the unsupervised setting. In this p aper, we examine the interpretability of disentangled representations by investigating two questions: where to be interpreted and what to be interpreted? A latent code is easily to be interpreted if it would consistently impact a certain subarea of the resulting generated image. We thus propose to learn a spatial mask to localize the effect of each individual latent dimension. On the other hand, interpretability usually comes from latent dimensions that capture simple and basic variations in data. We thus impose a perturbation on a certain dimension of the latent code, and expect to identify the perturbation along this dimension from the generated images so that the encoding of simple variations can be enforced. Additionally, we develop an unsupervised model selection method, which accumulates perceptual distance scores along axes in the latent space. On various datasets, our models can learn high-quality disentangled representations without supervision, showing the proposed modeling of interpretability is an effective proxy for achieving unsupervised disentanglement.
The model parameters of convolutional neural networks (CNNs) are determined by backpropagation (BP). In this work, we propose an interpretable feedforward (FF) design without any BP as a reference. The FF design adopts a data-centric approach. It der ives network parameters of the current layer based on data statistics from the output of the previous layer in a one-pass manner. To construct convolutional layers, we develop a new signal transform, called the Saab (Subspace Approximation with Adjusted Bias) transform. It is a variant of the principal component analysis (PCA) with an added bias vector to annihilate activations nonlinearity. Multiple Saab transforms in cascade yield multiple convolutional layers. As to fully-connected (FC) layers, we construct them using a cascade of multi-stage linear least squared regressors (LSRs). The classification and robustness (against adversarial attacks) performances of BP- and FF-designed CNNs applied to the MNIST and the CIFAR-10 datasets are compared. Finally, we comment on the relationship between BP and FF designs.
Feature attribution (FA), or the assignment of class-relevance to different locations in an image, is important for many classification problems but is particularly crucial within the neuroscience domain, where accurate mechanistic models of behaviou rs, or disease, require knowledge of all features discriminative of a trait. At the same time, predicting class relevance from brain images is challenging as phenotypes are typically heterogeneous, and changes occur against a background of significant natural variation. Here, we present a novel framework for creating class specific FA maps through image-to-image translation. We propose the use of a VAE-GAN to explicitly disentangle class relevance from background features for improved interpretability properties, which results in meaningful FA maps. We validate our method on 2D and 3D brain image datasets of dementia (ADNI dataset), ageing (UK Biobank), and (simulated) lesion detection. We show that FA maps generated by our method outperform baseline FA methods when validated against ground truth. More significantly, our approach is the first to use latent space sampling to support exploration of phenotype variation. Our code will be available online at https://github.com/CherBass/ICAM.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا