ترغب بنشر مسار تعليمي؟ اضغط هنا

On indefinite Kirchhoff-type equations under the combined effect of linear and superlinear terms

86   0   0.0 ( 0 )
 نشر من قبل Tsung-fang Wu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a class of Kirchhoff type equations involving a combination of linear and superlinear terms as follows: begin{equation*} -left( aint_{mathbb{R}^{N}}| abla u|^{2}dx+1right) Delta u+mu V(x)u=lambda f(x)u+g(x)|u|^{p-2}uquad text{ in }mathbb{R}^{N}, end{equation*}% where $Ngeq 3,2<p<2^{ast }:=frac{2N}{N-2}$, $Vin C(mathbb{R}^{N})$ is a potential well with the bottom $Omega :=int{xin mathbb{R}^{N} | V(x)=0}$. When $N=3$ and $4<p<6$, for each $a>0$ and $mu $ sufficiently large, we obtain that at least one positive solution exists for $% 0<lambdaleqlambda _{1}(f_{Omega}) $ while at least two positive solutions exist for $lambda _{1}(f_{Omega })< lambda<lambda _{1}(f_{Omega})+delta_{a}$ without any assumption on the integral $% int_{Omega }g(x)phi _{1}^{p}dx$, where $lambda _{1}(f_{Omega })>0$ is the principal eigenvalue of $-Delta $ in $H_{0}^{1}(Omega )$ with weight function $f_{Omega }:=f|_{Omega }$, and $phi _{1}>0$ is the corresponding principal eigenfunction. When $Ngeq 3$ and $2<p<min {4,2^{ast }}$, for $% mu $ sufficiently large, we conclude that $(i)$ at least two positive solutions exist for $a>0$ small and $0<lambda <lambda _{1}(f_{Omega })$; $% (ii)$ under the classical assumption $int_{Omega }g(x)phi _{1}^{p}dx<0$, at least three positive solutions exist for $a>0$ small and $lambda _{1}(f_{Omega })leq lambda<lambda _{1}(f_{Omega})+overline{delta }% _{a} $; $(iii)$ under the assumption $int_{Omega }g(x)phi _{1}^{p}dx>0$, at least two positive solutions exist for $a>a_{0}(p)$ and $lambda^{+}_{a}< lambda<lambda _{1}(f_{Omega})$ for some $a_{0}(p)>0$ and $lambda^{+}_{a}geq0$.



قيم البحث

اقرأ أيضاً

We are concerned with a class of Kirchhoff type equations in $mathbb{R}^{N}$ as follows: begin{equation*} left{ begin{array}{ll} -Mleft( int_{mathbb{R}^{N}}| abla u|^{2}dxright) Delta u+lambda Vleft( xright) u=f(x,u) & text{in }mathbb{R}^{N}, uin H^ {1}(mathbb{R}^{N}), & end{array}% right. end{equation*}% where $Ngeq 1,$ $lambda>0$ is a parameter, $M(t)=am(t)+b$ with $a,b>0$ and $min C(mathbb{R}^{+},mathbb{R}^{+})$, $Vin C(mathbb{R}^{N},mathbb{R}^{+})$ and $fin C(mathbb{R}^{N}times mathbb{R}, mathbb{R})$ satisfying $lim_{|u|rightarrow infty }f(x,u) /|u|^{k-1}=q(x)$ uniformly in $xin mathbb{R}^{N}$ for any $2<k<2^{ast}$($2^{ast}=infty$ for $N=1,2$ and $2^{ast}=2N/(N-2)$ for $Ngeq 3$). Unlike most other papers on this problem, we are more interested in the effects of the functions $m$ and $q$ on the number and behavior of solutions. By using minimax method as well as Caffarelli-Kohn-Nirenberg inequality, we obtain the existence and multiplicity of positive solutions for the above problem.
Consider a nonlinear Kirchhoff type equation as follows begin{equation*} left{ begin{array}{ll} -left( aint_{mathbb{R}^{N}}| abla u|^{2}dx+bright) Delta u+u=f(x)leftvert urightvert ^{p-2}u & text{ in }mathbb{R}^{N}, uin H^{1}(mathbb{R}^{N}), & end{a rray}% right. end{equation*}% where $Ngeq 1,a,b>0,2<p<min left{ 4,2^{ast }right}$($2^{ast }=infty $ for $N=1,2$ and $2^{ast }=2N/(N-2)$ for $Ngeq 3)$ and the function $fin C(mathbb{R}^{N})cap L^{infty }(mathbb{R}^{N})$. Distinguishing from the existing results in the literature, we are more interested in the geometric properties of the energy functional related to the above problem. Furthermore, the nonexistence, existence, unique and multiplicity of positive solutions are proved dependent on the parameter $a$ and the dimension $N.$ In particular, we conclude that a unique positive solution exists for $1leq Nleq4$ while at least two positive solutions are permitted for $Ngeq5$.
115 - Lintao Liu , Haibo Chen , Jie Yang 2021
In this paper, we study the existence and asymptotic properties of solutions to the following fractional Kirchhoff equation begin{equation*} left(a+bint_{mathbb{R}^{3}}|(-Delta)^{frac{s}{2}}u|^{2}dxright)(-Delta)^{s}u=lambda u+mu|u|^{q-2}u+|u|^{p-2}u quad hbox{in $mathbb{R}^3$,} end{equation*} with a prescribed mass begin{equation*} int_{mathbb{R}^{3}}|u|^{2}dx=c^{2}, end{equation*} where $sin(0, 1)$, $a, b, c>0$, $2<q<p<2_{s}^{ast}=frac{6}{3-2s}$, $mu>0$ and $lambdainmathbb{R}$ as a Lagrange multiplier. Under different assumptions on $q<p$, $c>0$ and $mu>0$, we prove some existence results about the normalized solutions. Our results extend the results of Luo and Zhang (Calc. Var. Partial Differential Equations 59, 1-35, 2020) to the fractional Kirchhoff equations. Moreover, we give some results about the behavior of the normalized solutions obtained above as $murightarrow0^{+}$.
We study the non-existence, existence and multiplicity of positive solutions to the following nonlinear Kirchhoff equation:% begin{equation*} left{ begin{array}{l} -Mleft( int_{mathbb{R}^{3}}leftvert abla urightvert ^{2}dxright) Delta u+mu Vleft( xr ight) u=Q(x)leftvert urightvert ^{p-2}u+lambda fleft( xright) utext{ in }mathbb{R}^{N}, uin H^{1}left( mathbb{R}^{N}right) ,% end{array}% right. end{equation*}% where $Ngeq 3,2<p<2^{ast }:=frac{2N}{N-2},Mleft( tright) =at+b$ $left( a,b>0right) ,$ the potential $V$ is a nonnegative function in $mathbb{R}% ^{N}$ and the weight function $Qin L^{infty }left( mathbb{R}^{N}right) $ with changes sign in $overline{Omega }:=left{ V=0right} .$ We mainly prove the existence of at least two positive solutions in the cases that $% left( iright) $ $2<p<min left{ 4,2^{ast }right} $ and $0<lambda <% left[ 1-2left[ left( 4-pright) /4right] ^{2/p}right] lambda _{1}left( f_{Omega }right) ;$ $left( iiright) $ $pgeq 4,lambda geq lambda _{1}left( f_{Omega }right) $ and near $lambda _{1}left( f_{Omega }right) $ for $mu >0$ sufficiently large, where $lambda _{1}left( f_{Omega }right) $ is the first eigenvalue of $-Delta $ in $% H_{0}^{1}left( Omega right) $ with weight function $f_{Omega }:=f|_{% overline{Omega }},$ whose corresponding positive principal eigenfunction is denoted by $phi _{1}.$ Furthermore, we also investigated the non-existence and existence of positive solutions if $a,lambda $ belongs to different intervals.
We consider a nonlinear Robin problem driven by the sum of $p$-Laplacian and $q$-Laplacian (i.e. the $(p,q)$-equation). In the reaction there are competing effects of a singular term and a parametric perturbation $lambda f(z,x)$, which is Caratheodor y and $(p-1)$-superlinear at $xinmathbb{R},$ without satisfying the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques, we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter $lambda>0$ varies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا