ﻻ يوجد ملخص باللغة العربية
We investigate a class of Kirchhoff type equations involving a combination of linear and superlinear terms as follows: begin{equation*} -left( aint_{mathbb{R}^{N}}| abla u|^{2}dx+1right) Delta u+mu V(x)u=lambda f(x)u+g(x)|u|^{p-2}uquad text{ in }mathbb{R}^{N}, end{equation*}% where $Ngeq 3,2<p<2^{ast }:=frac{2N}{N-2}$, $Vin C(mathbb{R}^{N})$ is a potential well with the bottom $Omega :=int{xin mathbb{R}^{N} | V(x)=0}$. When $N=3$ and $4<p<6$, for each $a>0$ and $mu $ sufficiently large, we obtain that at least one positive solution exists for $% 0<lambdaleqlambda _{1}(f_{Omega}) $ while at least two positive solutions exist for $lambda _{1}(f_{Omega })< lambda<lambda _{1}(f_{Omega})+delta_{a}$ without any assumption on the integral $% int_{Omega }g(x)phi _{1}^{p}dx$, where $lambda _{1}(f_{Omega })>0$ is the principal eigenvalue of $-Delta $ in $H_{0}^{1}(Omega )$ with weight function $f_{Omega }:=f|_{Omega }$, and $phi _{1}>0$ is the corresponding principal eigenfunction. When $Ngeq 3$ and $2<p<min {4,2^{ast }}$, for $% mu $ sufficiently large, we conclude that $(i)$ at least two positive solutions exist for $a>0$ small and $0<lambda <lambda _{1}(f_{Omega })$; $% (ii)$ under the classical assumption $int_{Omega }g(x)phi _{1}^{p}dx<0$, at least three positive solutions exist for $a>0$ small and $lambda _{1}(f_{Omega })leq lambda<lambda _{1}(f_{Omega})+overline{delta }% _{a} $; $(iii)$ under the assumption $int_{Omega }g(x)phi _{1}^{p}dx>0$, at least two positive solutions exist for $a>a_{0}(p)$ and $lambda^{+}_{a}< lambda<lambda _{1}(f_{Omega})$ for some $a_{0}(p)>0$ and $lambda^{+}_{a}geq0$.
We are concerned with a class of Kirchhoff type equations in $mathbb{R}^{N}$ as follows: begin{equation*} left{ begin{array}{ll} -Mleft( int_{mathbb{R}^{N}}| abla u|^{2}dxright) Delta u+lambda Vleft( xright) u=f(x,u) & text{in }mathbb{R}^{N}, uin H^
Consider a nonlinear Kirchhoff type equation as follows begin{equation*} left{ begin{array}{ll} -left( aint_{mathbb{R}^{N}}| abla u|^{2}dx+bright) Delta u+u=f(x)leftvert urightvert ^{p-2}u & text{ in }mathbb{R}^{N}, uin H^{1}(mathbb{R}^{N}), & end{a
In this paper, we study the existence and asymptotic properties of solutions to the following fractional Kirchhoff equation begin{equation*} left(a+bint_{mathbb{R}^{3}}|(-Delta)^{frac{s}{2}}u|^{2}dxright)(-Delta)^{s}u=lambda u+mu|u|^{q-2}u+|u|^{p-2}u
We study the non-existence, existence and multiplicity of positive solutions to the following nonlinear Kirchhoff equation:% begin{equation*} left{ begin{array}{l} -Mleft( int_{mathbb{R}^{3}}leftvert abla urightvert ^{2}dxright) Delta u+mu Vleft( xr
We consider a nonlinear Robin problem driven by the sum of $p$-Laplacian and $q$-Laplacian (i.e. the $(p,q)$-equation). In the reaction there are competing effects of a singular term and a parametric perturbation $lambda f(z,x)$, which is Caratheodor