ﻻ يوجد ملخص باللغة العربية
The application of deep learning to time series forecasting is one of the major challenges in present machine learning. We propose a novel methodology that combines machine learning and image processing methods to define and predict market states with intraday financial data. A wavelet transform is applied to the log-return of stock prices for both image extraction and denoising. A convolutional neural network then extracts patterns from denoised wavelet images to classify daily time series, i.e. a market state is associated with the binary prediction of the daily close price movement based on the wavelet image constructed from the price changes in the first hours of the day. This method overcomes the low signal-to-noise ratio problem in financial time series and gets a competitive prediction accuracy of the market states Up and Down of financial data as tested on the S&P 500.
Data augmentation methods in combination with deep neural networks have been used extensively in computer vision on classification tasks, achieving great success; however, their use in time series classification is still at an early stage. This is ev
Deep Learning (DL) models can be used to tackle time series analysis tasks with great success. However, the performance of DL models can degenerate rapidly if the data are not appropriately normalized. This issue is even more apparent when DL is used
Financial time series have been investigated to follow fat-tailed distributions. Further, an empirical probability distribution sometimes shows cut-off shapes on its tails. To describe this stylized fact, we incorporate the cut-off effect in supersta
A well-interpretable measure of information has been recently proposed based on a partition obtained by intersecting a random sequence with its moving average. The partition yields disjoint sets of the sequence, which are then ranked according to the
This paper has been withdrawn by the authors.