ﻻ يوجد ملخص باللغة العربية
The Majorana Demonstrator is a neutrinoless double-beta decay search consisting of a low-background modular array of high-purity germanium detectors, $sim2/3$ of which are enriched to 88% in $^{76}$Ge. The experiment is also searching for double-beta decay of $^{76}$Ge to excited states (e.s.) in $^{76}$Se. $^{76}$Ge can decay into three daughter states of $^{76}$Se, with clear event signatures consisting of a $betabeta$-decay followed by the prompt emission of one or two $gamma$-rays. This results with high probability in multi-detector coincidences. The granularity of the Demonstrator detector array enables powerful discrimination of this event signature from backgrounds. Using 41.9~kg-y of isotopic exposure, the Demonstrator has set world leading limits for each e.s. decay of $^{76}$Ge, with 90% CL lower half-life limits in the range of $(0.75-4.0)times10^{24}$~y. In particular, for the $2 u$ transition to the first $0^+$ e.s. of $^{76}$Se, a lower half-life limit of $7.5times10^{23}$~y at 90% CL was achieved.
The MAJORANA DEMONSTRATOR is searching for double-beta decay of $^{76}$Ge to excited states (E.S.) in $^{76}$Se using a modular array of high purity Germanium detectors. $^{76}$Ge can decay into three E.S.s of $^{76}$Se. The E.S. decays have a clear
The Majorana Experiment is a next-generation Ge-76 double-beta decay search. It will employ 500 kg of Ge, isotopically enriched to 86% in Ge-76, in the form of 200 detectors in a close-packed array for high granularity. Each crystal will be electroni
The observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana particle and provide information on the absolute scale of neutrino mass. The MAJORANA Collaboration is constructing the DEMONSTRATOR, an array of ger
GERDA, the GERmanium Detector Array experiment, is a new double beta-decay experiment which is currently under construction in the INFN National Gran Sasso Laboratory (LNGS), Italy. It is implementing a new shielding concept by operating bare Ge diod
Neutrino accompanied double beta-decay of Ge-76 can populate the ground state and the excited states of Se-76. While the decay to the ground state has been observed with a half-life of 1.74 +0.18 -0.16 10^21 years, decays to the excited states have n