ﻻ يوجد ملخص باللغة العربية
Deep reinforcement learning has shown remarkable success in the past few years. Highly complex sequential decision making problems have been solved in tasks such as game playing and robotics. Unfortunately, the sample complexity of most deep reinforcement learning methods is high, precluding their use in some important applications. Model-based reinforcement learning creates an explicit model of the environment dynamics to reduce the need for environment samples. Current deep learning methods use high-capacity networks to solve high-dimensional problems. Unfortunately, high-capacity models typically require many samples, negating the potential benefit of lower sample complexity in model-based methods. A challenge for deep model-based methods is therefore to achieve high predictive power while maintaining low sample complexity. In recent years, many model-based methods have been introduced to address this challenge. In this paper, we survey the contemporary model-based landscape. First we discuss definitions and relations to other fields. We propose a taxonomy based on three approaches: using explicit planning on given transitions, using explicit planning on learned transitions, and end-to-end learning of both planning and transitions. We use these approaches to organize a comprehensive overview of important recent developments such as latent models. We describe methods and benchmarks, and we suggest directions for future work for each of the approaches. Among promising research directions are curriculum learning, uncertainty modeling, and use of latent models for transfer learning.
Sequential decision making, commonly formalized as Markov Decision Process (MDP) optimization, is a key challenge in artificial intelligence. Two key approaches to this problem are reinforcement learning (RL) and planning. This paper presents a surve
Reinforcement learning (RL) is well known for requiring large amounts of data in order for RL agents to learn to perform complex tasks. Recent progress in model-based RL allows agents to be much more data-efficient, as it enables them to learn behavi
Recent researches show that machine learning has the potential to learn better heuristics than the one designed by human for solving combinatorial optimization problems. The deep neural network is used to characterize the input instance for construct
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcem
Recent breakthroughs in Go play and strategic games have witnessed the great potential of reinforcement learning in intelligently scheduling in uncertain environment, but some bottlenecks are also encountered when we generalize this paradigm to unive