ﻻ يوجد ملخص باللغة العربية
Machine learning is becoming widely used in analyzing the thermodynamics of many-body condensed matter systems. Restricted Boltzmann Machine (RBM) aided Monte Carlo simulations have sparked interest recently, as they manage to speed up classical Monte Carlo simulations. Here we employ the Convolutional Restricted Boltzmann Machine (CRBM) method and show that its use helps to reduce the number of parameters to be learned drastically by taking advantage of translation invariance. Furthermore, we show that it is possible to train the CRBM at smaller lattice sizes, and apply it to larger lattice sizes. To demonstrate the efficiency of CRBM we apply it to the paradigmatic Ising and Kitaev models in two-dimensions.
We present a worm-type Monte Carlo study of several typical models in the three-dimensional (3D) U(1) universality class, which include the classical 3D XY model in the directed flow representation and its Villain version, as well as the 2D quantum B
We discuss how to construct models of interacting anyons by generalizing quantum spin Hamiltonians to anyonic degrees of freedom. The simplest interactions energetically favor pairs of anyons to fuse into the trivial (identity) channel, similar to th
We review efficient Monte Carlo methods for simulating quantum systems which couple to a dissipative environment. A brief introduction of the Caldeira-Leggett model and the Monte Carlo method will be followed by a detailed discussion of cluster algor
The cavity method is a well established technique for solving classical spin models on sparse random graphs (mean-field models with finite connectivity). Laumann et al. [arXiv:0706.4391] proposed recently an extension of this method to quantum spin-1
We detail the use of simple machine learning algorithms to determine the critical Bose-Einstein condensation (BEC) critical temperature $T_text{c}$ from ensembles of paths created by path-integral Monte Carlo (PIMC) simulations. We quickly overview c