ﻻ يوجد ملخص باللغة العربية
A method for determining the internal DC magnetic field inside a superconducting cavity is presented. The method relies on the relationship between magnetic field and frequency of the Kittel mode of a ferrimagnetic sphere, hybridised in the dispersive regime of the superconducting cavity. Results were used to experimentally determine the level of screening a superconducting Nb cavity provides as it changes from perfect diamagnetism to no screening. Two cavity geometries were tested, a cylinder and single post re-entrant cavity. Both demonstrated a consistent value of field that enters the cavity, expected to be the superheating critical field. Hysteresis in the screened field during ramp up and ramp down of the external magnetic field due to trapped vortices was also observed. Some abnormal behaviour was observed in the cylindrical cavity in the form of plateaus in the internal field above the first critical field, and we discuss the potential origin of this behaviour. The measurement approach would be a useful diagnostic for axion dark matter searches, which plan on using superconducting materials but need to know precisely the internal magnetic field.
Phase-sensitive measurements of the superconducting gap in Fe-based superconductors have proven more difficult than originally anticipated. While quasiparticle interference (QPI) measurements based on scanning tunneling spectroscopy are often propose
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O6+x single crystals. The fluctuation conductivity is found to vanish
We report results of experimental studies of ac susceptibility of Nb single crystal at low frequencies in swept magnetic fields applied parallel to the surface. Analysis of the experimental data shows that the swept magnetic field significantly chang
We demonstrate the integration of a mesoscopic ferromagnetic needle with a cavity optomechanical torsional resonator, and its use for quantitative determination of the needles magnetic properties, as well as amplification and cooling of the resonator
We report measurements of the temperature dependent components of the magnetic penetration depth {lambda}(T) in single crystal samples of YBa_2Cu_4O_8 using a radio frequency tunnel diode oscillator technique. We observe a downturn in {lambda}(T) at