ﻻ يوجد ملخص باللغة العربية
Hydrodynamic phenomena can be observed with light thanks to the analogy between quantum gases and nonlinear optics. In this Letter, we report an experimental study of the superfluid-like properties of light in a (1+1)-dimensional nonlinear optical mesh lattice, where the arrival time of optical pulses plays the role of a synthetic spatial dimension. A spatially narrow defect at rest is used to excite sound waves in the fluid of light and measure the sound speed. The critical velocity for superfluidity is probed by looking at the threshold in the deposited energy by a moving defect, above which the apparent superfluid behaviour breaks down. Our observations establish optical mesh lattices as a promising platform for fluids of light.
We address the properties of fully three-dimensional solitons in complex parity-time (PT)-symmetric periodic lattices with focusing Kerr nonlinearity, and uncover that such lattices can stabilize both, fundamental and vortex-carrying soliton states.
Entanglement is a fundamental resource for quantum information processing, occurring naturally in many-body systems at low temperatures. The presence of entanglement and, in particular, its scaling with the size of system partitions underlies the com
We report the observation of many-body interaction effects for a homonuclear bosonic mixture in a three-dimensional optical lattice with variable state dependence along one axis. Near the superfluid-to-Mott insulator transition for one component, we
Superfluidity, the ability of a liquid or gas to flow with zero viscosity, is one of the most remarkable implications of collective quantum coherence. In equilibrium systems like liquid 4He and ultracold atomic gases, superfluid behaviour conjugates
Photonic lattices are usually considered to be limited by their lack of methods to include interactions. We address this issue by introducing mean-field interactions through optical components which are external to the photonic lattice. The proposed