ﻻ يوجد ملخص باللغة العربية
The ultrafast dynamics of magnetic order in a ferromagnet are governed by the interplay between electronic, magnetic and lattice degrees of freedom. In order to obtain a microscopic understanding of ultrafast demagnetization, information on the response of all three subsystems is required. A consistent description of demagnetization and microscopic energy flow, however, is still missing. Here, we combine a femtosecond electron diffraction study of the ultrafast lattice response of nickel to laser excitation with ab initio calculations of the electron-phonon interaction and energy-conserving atomistic spin dynamics simulations. Our model is in agreement with the observed lattice dynamics and previously reported electron and magnetization dynamics. Our approach reveals that the spin system is the dominating heat sink in the initial few hundreds of femtoseconds and implies a transient non-thermal state of the spins. Our results provide a clear picture of the microscopic energy flow between electronic, magnetic and lattice degrees of freedom on ultrafast timescales and constitute a foundation for theoretical descriptions of demagnetization that are consistent with the dynamics of all three subsystems.
First-principles calculations combining density functional theory and many-body perturbation theory can provide microscopic insight into the dynamics of electrons and phonons in materials. We review this theoretical and computational framework, focus
Femtosecond laser excitation of solid-state systems creates non-equilibrium hot electrons that cool down by transferring their energy to other degrees of freedom and ultimately to lattice vibrations of the solid. By combining ab initio calculations w
We describe a coupled cluster framework for coupled systems of electrons and phonons. Neutral and charged excitations are accessed via the equation-of-motion version of the theory. Benchmarks on the Hubbard-Holstein model allow us to assess the stren
Ultrafast spectroscopies can access the dynamics of electrons and nuclei at short timescales, shedding light on nonequilibrium phenomena in materials. However, development of accurate calculations to interpret these experiments has lagged behind as w
Spin and lattice dynamics of CaMn7O12 ceramics were investigated using infrared, THz and inelastic neutron scattering (INS) spectroscopies in the temperature range 2 to 590 K, and, at low temperatures, in applied magnetic fields of up to 12 T. On coo