ﻻ يوجد ملخص باللغة العربية
Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively nearby events. We use late-time radio observations of short duration gamma-ray bursts (sGRBs) to constrain this model. Two samples of events were studied: four sGRBs that are possibly in the local (<200 Mpc) universe were selected to constrain the remnant non-thermal emission from the sub-relativistic ejecta, whereas 17 sGRBs at cosmological distances were used to constrain the presence of a proto-magnetar central engine, possibly re-energezing the merger ejecta. We consider the case of GRB~170817A/GW170817, and find that in this case the early radio emission may be quenched by the jet blast-wave. In all cases, for ejecta mass range of M_ej lesssim 10^{-2} (5 * 10^{-2}) M_sun, we can rule out very energetic merger ejecta E_ej gtrsim 5 * 10^{52}(10^{53}) erg, thus excluding the presence of a powerful magnetar as a merger remnant.
Gamma-ray bursts (GRBs) display a bimodal duration distribution, with a separation between the short- and long-duration bursts at about 2 sec. The progenitors of long GRBs have been identified as massive stars based on their association with Type Ic
We propose a model for short duration gamma-ray bursts (sGRBs) based on the formation of a quark star after the merger of two neutron stars. We assume that the sGRB central engine is a proto-magnetar, which has been previously invoked to explain the
The detection of GW170817, its extensive multi-wavelength follow-up campaign, and the large amount of theoretical development and interpretation that followed, have resulted in a significant step forward in the understanding of the binary neutron sta
Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze t
Long-duration gamma-ray bursts (LGRBs) are the signatures of extraordinarily high-energy events occurring in our universe. Since their discovery, we have determined that these events are produced during the core-collapse deaths of rare young massive