ﻻ يوجد ملخص باللغة العربية
We construct many``low rank algebraic vector bundles on ``simple smooth affine varieties of high dimension. In a related direction, we study the existence of polynomial representatives of elements in the classical (unstable) homotopy groups of spheres. Using techniques of A^1-homotopy theory, we are able to produce ``motivic lifts of elements in classical homotopy groups of spheres; these lifts provide interesting polynomial maps of spheres and algebraic vector bundles.
We study generically split octonion algebras over schemes using techniques of ${mathbb A}^1$-homotopy theory. By combining affine representability results with techniques of obstruction theory, we establish classification results over smooth affine s
We prove that existence of a k-rational point can be detected by the stable A^1-homotopy category of S^1-spectra, or even a rationalized variant of this category.
If $f:S to S$ is a finite locally free morphism of schemes, we construct a symmetric monoidal norm functor $f_otimes: mathcal H_*(S) tomathcal H_*(S)$, where $mathcal H_*(S)$ is the pointed unstable motivic homotopy category over $S$. If $f$ is finit
Let k be a field. Denote by Spc(k)_* the unstable, pointed motivic homotopy category and by Omega_Gm: Spc(k)_* to Spc(k)_* the Gm-loops functor. For a k-group G, denote by Gr_G the affine Grassmannian of G. If G is isotropic reductive, we provide a c
We study the 0-th stable A^1-homotopy sheaf of a smooth proper variety over a field k assumed to be infinite, perfect and to have characteristic unequal to 2. We provide an explicit description of this sheaf in terms of the theory of (twisted) Chow-W