ﻻ يوجد ملخص باللغة العربية
The space of synthesizable molecules is greater than $10^{60}$, meaning only a vanishingly small fraction of these molecules have ever been realized in the lab. In order to prioritize which regions of this space to explore next, synthetic chemists need access to accurate molecular property predictions. While great advances in molecular machine learning have been made, there is a dearth of benchmarks featuring properties that are useful for the synthetic chemist. Focussing directly on the needs of the synthetic chemist, we introduce the Photoswitch Dataset, a new benchmark for molecular machine learning where improvements in model performance can be immediately observed in the throughput of promising molecules synthesized in the lab. Photoswitches are a versatile class of molecule for medical and renewable energy applications where a molecules efficacy is governed by its electronic transition wavelengths. We demonstrate superior performance in predicting these wavelengths compared to both time-dependent density functional theory (TD-DFT), the incumbent first principles quantum mechanical approach, as well as a panel of human experts. Our baseline models are currently being deployed in the lab as part of the decision process for candidate synthesis. It is our hope that this benchmark can drive real discoveries in photoswitch chemistry and that future benchmarks can be introduced to pivot learning algorithm development to benefit more expansive areas of synthetic chemistry.
Molecular machine learning has been maturing rapidly over the last few years. Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However,
Despite the increasingly successful application of neural networks to many problems in the geosciences, their complex and nonlinear structure makes the interpretation of their predictions difficult, which limits model trust and does not allow scienti
Benchmark datasets have a significant impact on accelerating research in programming language tasks. In this paper, we introduce CodeXGLUE, a benchmark dataset to foster machine learning research for program understanding and generation. CodeXGLUE in
Two types of approaches to modeling molecular systems have demonstrated high practical efficiency. Density functional theory (DFT), the most widely used quantum chemical method, is a physical approach predicting energies and electron densities of mol
Atomistic or ab-initio molecular dynamics simulations are widely used to predict thermodynamics and kinetics and relate them to molecular structure. A common approach to go beyond the time- and length-scales accessible with such computationally expen