ﻻ يوجد ملخص باللغة العربية
The time-dependent radiation transport equation is discretized using the meshless-local Petrov-Galerkin method with reproducing kernels. The integration is performed using a Voronoi tessellation, which creates a partition of unity that only depends on the position and extent of the kernels. The resolution of the integration automatically follows the particles and requires no manual adjustment. The discretization includes streamline-upwind Petrov-Galerkin stabilization to prevent oscillations and improve numerical conditioning. The angular quadrature is selectively refineable to increase angular resolution in chosen directions. The time discretization is done using backward Euler. The transport solve for each direction and the solve for the scattering source are both done using Krylov iterative methods. Results indicate first-order convergence in time and second-order convergence in space for linear reproducing kernels.
We present several methods, which utilize symplectic integration techniques based on two and three part operator splitting, for numerically solving the equations of motion of the disordered, discrete nonlinear Schrodinger (DDNLS) equation, and compar
We describe a new algorithm to solve the time dependent, frequency integrated radiation transport (RT) equation implicitly, which is coupled to an explicit solver for equations of magnetohydrodynamics (MHD) using {sf Athena++}. The radiation filed is
The self-adjoint angular flux and streamline-upwind Petrov-Galerkin transport equations are discretized using reproducing kernels with the collocation method to produce a discretization that is compatible with conservative reproducing kernel smoothed
Torsional modes within a complex molecule containing various functional groups are often strongly coupled so that the harmonic approximation and one-dimensional torsional treatment are inaccurate to evaluate their partition functions. A family of mul
This work is thought as an operative guide to discrete exterior calculus (DEC), but at the same time with a rigorous exposition. We present a version of (DEC) on cubic cell, defining it for discrete manifolds. An example of how it works, it is done o