ﻻ يوجد ملخص باللغة العربية
Maximum consensus (MC) robust fitting is a fundamental problem in low-level vision to process raw-data. Typically, it firstly finds a consensus set of inliers and then fits a model on the consensus set. This work proposes a new formulation to achieve simultaneous maximum consensus and model estimation (MCME), which has two significant features compared with traditional MC robust fitting. First, it takes fitting residual into account in finding inliers, hence its lowest achievable residual in model fitting is lower than that of MC robust fitting. Second, it has an unconstrained formulation involving binary variables, which facilitates the use of the effective semidefinite relaxation (SDR) method to handle the underlying challenging combinatorial optimization problem. Though still nonconvex after SDR, it becomes biconvex in some applications, for which we use an alternating minimization algorithm to solve. Further, the sparsity of the problem is exploited in combination with low-rank factorization to develop an efficient algorithm. Experiments show that MCME significantly outperforms RANSAC and deterministic approximate MC methods at high outlier ratios. Besides, in rotation and Euclidean registration, it also compares favorably with state-of-the-art registration methods, especially in high noise and outliers. Code is available at textit{https://github.com/FWen/mcme.git}.
Multi-model fitting has been extensively studied from the random sampling and clustering perspectives. Most assume that only a single type/class of model is present and their generalizations to fitting multiple types of models/structures simultaneous
Recently, some hypergraph-based methods have been proposed to deal with the problem of model fitting in computer vision, mainly due to the superior capability of hypergraph to represent the complex relationship between data points. However, a hypergr
This paper deals with the geometric multi-model fitting from noisy, unstructured point set data (e.g., laser scanned point clouds). We formulate multi-model fitting problem as a sequential decision making process. We then use a deep reinforcement lea
We propose a new cascaded regressor for eye center detection. Previous methods start from a face or an eye detector and use either advanced features or powerful regressors for eye center localization, but not both. Instead, we detect the eyes more ac
In this paper, we propose a novel hierarchical representation via message propagation (HRMP) method for robust model fitting, which simultaneously takes advantages of both the consensus analysis and the preference analysis to estimate the parameters