ترغب بنشر مسار تعليمي؟ اضغط هنا

Spherical Feature Transform for Deep Metric Learning

180   0   0.0 ( 0 )
 نشر من قبل Yan Bai
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data augmentation in feature space is effective to increase data diversity. Previous methods assume that different classes have the same covariance in their feature distributions. Thus, feature transform between different classes is performed via translation. However, this approach is no longer valid for recent deep metric learning scenarios, where feature normalization is widely adopted and all features lie on a hypersphere. This work proposes a novel spherical feature transform approach. It relaxes the assumption of identical covariance between classes to an assumption of similar covariances of different classes on a hypersphere. Consequently, the feature transform is performed by a rotation that respects the spherical data distributions. We provide a simple and effective training method, and in depth analysis on the relation between the two different transforms. Comprehensive experiments on various deep metric learning benchmarks and different baselines verify that our method achieves consistent performance improvement and state-of-the-art results.



قيم البحث

اقرأ أيضاً

We present a novel framework to learn to convert the perpixel photometric information at each view into spatially distinctive and view-invariant low-level features, which can be plugged into existing multi-view stereo pipeline for enhanced 3D reconst ruction. Both the illumination conditions during acquisition and the subsequent per-pixel feature transform can be jointly optimized in a differentiable fashion. Our framework automatically adapts to and makes efficient use of the geometric information available in different forms of input data. High-quality 3D reconstructions of a variety of challenging objects are demonstrated on the data captured with an illumination multiplexing device, as well as a point light. Our results compare favorably with state-of-the-art techniques.
Photometric loss is widely used for self-supervised depth and egomotion estimation. However, the loss landscapes induced by photometric differences are often problematic for optimization, caused by plateau landscapes for pixels in textureless regions or multiple local minima for less discriminative pixels. In this work, feature-metric loss is proposed and defined on feature representation, where the feature representation is also learned in a self-supervised manner and regularized by both first-order and second-order derivatives to constrain the loss landscapes to form proper convergence basins. Comprehensive experiments and detailed analysis via visualization demonstrate the effectiveness of the proposed feature-metric loss. In particular, our method improves state-of-the-art methods on KITTI from 0.885 to 0.925 measured by $delta_1$ for depth estimation, and significantly outperforms previous method for visual odometry.
Deep metric learning, which learns discriminative features to process image clustering and retrieval tasks, has attracted extensive attention in recent years. A number of deep metric learning methods, which ensure that similar examples are mapped clo se to each other and dissimilar examples are mapped farther apart, have been proposed to construct effective structures for loss functions and have shown promising results. In this paper, different from the approaches on learning the loss structures, we propose a robust SNR distance metric based on Signal-to-Noise Ratio (SNR) for measuring the similarity of image pairs for deep metric learning. By exploring the properties of our SNR distance metric from the view of geometry space and statistical theory, we analyze the properties of our metric and show that it can preserve the semantic similarity between image pairs, which well justify its suitability for deep metric learning. Compared with Euclidean distance metric, our SNR distance metric can further jointly reduce the intra-class distances and enlarge the inter-class distances for learned features. Leveraging our SNR distance metric, we propose Deep SNR-based Metric Learning (DSML) to generate discriminative feature embeddings. By extensive experiments on three widely adopted benchmarks, including CARS196, CUB200-2011 and CIFAR10, our DSML has shown its superiority over other state-of-the-art methods. Additionally, we extend our SNR distance metric to deep hashing learning, and conduct experiments on two benchmarks, including CIFAR10 and NUS-WIDE, to demonstrate the effectiveness and generality of our SNR distance metric.
3D morphable models are widely used for the shape representation of an object class in computer vision and graphics applications. In this work, we focus on deep 3D morphable models that directly apply deep learning on 3D mesh data with a hierarchical structure to capture information at multiple scales. While great efforts have been made to design the convolution operator, how to best aggregate vertex features across hierarchical levels deserves further attention. In contrast to resorting to mesh decimation, we propose an attention based module to learn mapping matrices for better feature aggregation across hierarchical levels. Specifically, the mapping matrices are generated by a compatibility function of the keys and queries. The keys and queries are trainable variables, learned by optimizing the target objective, and shared by all data samples of the same object class. Our proposed module can be used as a train-only drop-in replacement for the feature aggregation in existing architectures for both downsampling and upsampling. Our experiments show that through the end-to-end training of the mapping matrices, we achieve state-of-the-art results on a variety of 3D shape datasets in comparison to existing morphable models.
With the development of deep learning, Deep Metric Learning (DML) has achieved great improvements in face recognition. Specifically, the widely used softmax loss in the training process often bring large intra-class variations, and feature normalizat ion is only exploited in the testing process to compute the pair similarities. To bridge the gap, we impose the intra-class cosine similarity between the features and weight vectors in softmax loss larger than a margin in the training step, and extend it from four aspects. First, we explore the effect of a hard sample mining strategy. To alleviate the human labor of adjusting the margin hyper-parameter, a self-adaptive margin updating strategy is proposed. Then, a normalized version is given to take full advantage of the cosine similarity constraint. Furthermore, we enhance the former constraint to force the intra-class cosine similarity larger than the mean inter-class cosine similarity with a margin in the exponential feature projection space. Extensive experiments on Labeled Face in the Wild (LFW), Youtube Faces (YTF) and IARPA Janus Benchmark A (IJB-A) datasets demonstrate that the proposed methods outperform the mainstream DML methods and approach the state-of-the-art performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا