ﻻ يوجد ملخص باللغة العربية
Using the PMO-13.7 m millimeter telescope at Delingha in China, we have conducted a large-scale simultaneous survey of $^{12}$CO, $^{13}$CO, and C$^{18}$O $J=1-0$ emission toward the sky region centered at $l$=$209.7^circ$, $b$=$-$2.25$^circ$ with a coverage of $4.0^circ times 4.5^circ$. The majority of the emission in the region comes from the clouds with velocities lying in the range from $-$3 km s$^{-1}$ to 55 km s$^{-1}$, at kinematic distances from 0.5 kpc to 7.0 kpc. The molecular clouds in the region are concentrated into three velocity ranges. The molecular clouds associated with the ten H II regions/candidates are identified and their physical properties are presented. Massive stars are found within Sh2-280, Sh2-282, Sh2-283, and BFS54, and we suggest them to be the candidate excitation sources of the H II regions. The distributions of excitation temperature and line width with the projected distance from the center of H II region/candidate suggest that the majority of the ten H II regions/candidates and their associated molecular gas are three-dimensional structures, rather than two-dimensional structures.
We have studied the properties of molecular clouds in the second quadrant of the Milky Way Mid-plane from l$=$104$.!!^{circ}$75 to l$=$119$.!!^{circ}$75 and b$=-$5$.!!^{circ}$25 to b$=$5$.!!^{circ}$25 using the $^{12}$CO, $^{13}$CO, and C$^{18}$O $J=
This work makes available a further 2,860deg$^2$ of the GLEAM survey, covering half of the accessible Galactic Plane, across twenty frequency bands sampling $72-231$MHz, with resolution $4-2$. Unlike previous GLEAM data releases, we used multi-scale
We examined the latest data release from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey covering $345^circ < l < 60^circ$, $180^circ < l < 240^circ$, using these data and that of the Widefield Infrared Survey Explorer
We have detected 27 new supernova remnants (SNRs) using a new data release of the GLEAM survey from the Murchison Widefield Array (MWA) telescope, including the lowest surface-brightness SNR ever detected, G0.1-9.7. Our method uses spectral fitting t
The GLOSTAR survey will study the star formation in the Galactic plane between $-2^{circ}< textit{l}< 85^{circ}$ and $|b| < 1^{circ}$ with unprecedented sensitivity in both, flux density ($sim$ 40 $mu Jy$ beam$^{-1}$) and range of angular scales ($si