ترغب بنشر مسار تعليمي؟ اضغط هنا

SALT HRS capabilities for time resolved pulsation analysis: a test with the roAp star $alpha$ Circini

112   0   0.0 ( 0 )
 نشر من قبل Daniel Holdsworth
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectroscopy is a powerful tool for detecting variability in the rapidly oscillating Ap (roAp) stars. The technique requires short integrations times and high resolution, and so is limited to only a few telescopes and instruments. To test the capabilities of the High Resolution Spectrograph (HRS) at the Southern African Large Telescope (SALT) for the study of pulsations in roAp stars, we collected 2.45 hr of high-resolution data of the well studied roAp star $alpha$ Cir in a previously unused instrument configuration. We extracted radial velocity measurements using different rare earth elements, and the core of H$_alpha$, via the cross correlation method. We performed the same analysis with a set of $alpha$ Cir data collected with the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph to provide a benchmark for our SALT HRS test. We measured significant radial velocity variations in the HRS data and show that our results are in excellent agreement between the two data sets, with similar signal-to-noise ratio detections of the principal pulsation mode. With the HRS data, we report the detection of a second mode, showing the instrument is capable of detecting multiple and low-amplitude signals in a short observing window. We concluded that SALT HRS is well-suited for characterising pulsations in Ap stars, opening a new science window for the telescope. Although our analysis focused on roAp stars, the fundamental results are applicable to other areas of astrophysics where high temporal and spectral resolution observations are required.



قيم البحث

اقرأ أيضاً

Chemically peculiar (CP) stars with a measurable magnetic field comprise the group of mCP stars. The pulsating members define the subgroup of rapidly oscillating Ap (roAp) stars, of which Alpha Circini is the brightest member. Hence, Alpha Circini al lows the application of challenging techniques, such as interferometry, very high temporal and spectral resolution photometry, and spectroscopy in a wide wavelength range, that have the potential to provide unique information about the structure and evolution of a star. Based on new photometry from BRITE-Constellation, obtained with blue and red filters, and on photometry from WIRE, SMEI, and TESS we attempt to determine the surface spot structure of Alpha Circini and investigate pulsation frequencies. We used photometric surface imaging and frequency analyses and Bayesian techniques in order to quantitatively compare the probability of different models. BRITE-Constellation photometry obtained from 2014 to 2016 is put in the context of space photometry obtained by WIRE, SMEI, and TESS. This provides improvements in the determination of the rotation period and surface features (three spots detected and a fourth one indicated). The main pulsation frequencies indicate two consecutive radial modes and one intermediate dipolar mode. Advantages and problems of the applied Bayesian technique are discussed.
230 - H. Bruntt , J. R. North , M. Cunha 2008
We have used the Sydney University Stellar Interferometer (SUSI) to measure the angular diameter of alpha Cir. This is the first detailed interferometric study of a rapidly oscillating A (roAp) star, alpha Cir being the brightest member of its class. We used the new and more accurate Hipparcos parallax to determine the radius to be 1.967+-0.066 Rs. We have constrained the bolometric flux from calibrated spectra to determine an effective temperature of 7420+-170 K. This is the first direct determination of the temperature of an roAp star. Our temperature is at the low end of previous estimates, which span over 1000 K and were based on either photometric indices or spectroscopic methods. In addition, we have analysed two high-quality spectra of alpha Cir, obtained at different rotational phases and we find evidence for the presence of spots. In both spectra we find nearly solar abundances of C, O, Si, Ca and Fe, high abundance of Cr and Mn, while Co, Y, Nd and Eu are overabundant by about 1 dex. The results reported here provide important observational constraints for future studies of the atmospheric structure and pulsation of alpha Cir.
We present a detailed study of the pulsation of alpha Circini, the brightest of the rapidly oscillating Ap stars. We have obtained 84 days of high-precision photometry from four runs with the star tracker on the WIRE satellite. Simultaneously, we col lected ground-based Johnson B observations on 16 nights at the South African Astronomical Observatory. In addition to the dominant oscillation mode at 2442 microHz, we detect two new modes that lie symmetrically around the principal mode to form a triplet. The average separation between these modes is 30.173+-0.004 microHz and they are nearly equidistant with the separations differing by only 3.9 nHz. We compare the observed frequencies with theoretical pulsation models based on constraints from the recently determined interferometric radius and effective temperature, and the recently updated Hipparcos parallax. We show that the theoretical large separations for models of alpha Cir with global parameters within the 1-sigma observational uncertainties vary between 59 and 65 microHz. This is consistent with the large separation being twice the observed value, indicating that the three main modes are of alternating even and odd degrees. The frequency differences in the triplet are significantly smaller than those predicted from our models, for all possible combinations of mode degrees, and may indicate that the effects of magnetic perturbations need to be taken into account. The WIRE light curves are modulated by a double wave with a period of 4.479 days, and a peak-to-peak amplitude of 4 mmag. This variation is due to the rotation of the star and is a new discovery, made possible by the high precision of the WIRE photometry. The rotational modulation confirms an earlier indirect determination of the rotation period.
Precise time-series photometry with the MOST satellite has led to identification of 10 pulsation frequencies in the rapidly oscillating Ap (roAp) star HD 134214. We have fitted the observed frequencies with theoretical frequencies of axisymmetric mod es in a grid of stellar models with dipole magnetic fields. We find that, among models with a standard composition of $(X,Z) = (0.70,0.02)$ and with suppressed convection, eigenfrequencies of a $1.65,{rm M}_odot$ model with $log T_{rm eff} = 3.858$ and a polar magnetic field strength of 4.1kG agree best with the observed frequencies. We identify the observed pulsation frequency with the largest amplitude as a deformed dipole ($ell = 1$) mode, and the four next-largest-amplitude frequencies as deformed $ell = 2$ modes. These modes have a radial quasi-node in the outermost atmospheric layers ($tau sim 10^{-3}$). Although the model frequencies agree roughly with observed ones, they are all above the acoustic cut-off frequency for the model atmosphere and hence are predicted to be damped. The excitation mechanism for the pulsations of HD 134214 is not clear, but further investigation of these modes may be a probe of the atmospheric structure in this magnetic chemically peculiar star.
247 - D.W. Kurtz , M.S. Cunha , H. Saio 2011
We have discovered a new rapidly oscillating Ap star among the Kepler Mission target stars, KIC 10195926. This star shows two pulsation modes with periods that are amongst the longest known for roAp stars at 17.1 min and 18.1 min, indicating that the star is near the terminal age main sequence. The principal pulsation mode is an oblique dipole mode that shows a rotationally split frequency septuplet that provides information on the geometry of the mode. The secondary mode also appears to be a dipole mode with a rotationally split triplet, but we are able to show within the improved oblique pulsator model that these two modes cannot have the same axis of pulsation. This is the first time for any pulsating star that evidence has been found for separate pulsation axes for different modes. The two modes are separated in frequency by 55 microHz, which we model as the large separation. The star is an alpha^2 CVn spotted magnetic variable that shows a complex rotational light variation with a period of Prot = 5.68459 d. For the first time for any spotted magnetic star of the upper main sequence, we find clear evidence of light variation with a period of twice the rotation period; i.e. a subharmonic frequency of $ u_{rm rot}/2$. We propose that this and other subharmonics are the first observed manifestation of torsional modes in an roAp star. From high resolution spectra we determine Teff = 7400 K, log g = 3.6 and v sin i = 21 km/s. We have found a magnetic pulsation model with fundamental parameters close to these values that reproduces the rotational variations of the two obliquely pulsating modes with different pulsation axes. The star shows overabundances of the rare earth elements, but these are not as extreme as most other roAp stars. The spectrum is variable with rotation, indicating surface abundance patches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا