ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated Data in Differential Privacy: Definition and Analysis

170   0   0.0 ( 0 )
 نشر من قبل Tao Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Differential privacy is a rigorous mathematical framework for evaluating and protecting data privacy. In most existing studies, there is a vulnerable assumption that records in a dataset are independent when differential privacy is applied. However, in real-world datasets, records are likely to be correlated, which may lead to unexpected data leakage. In this survey, we investigate the issue of privacy loss due to data correlation under differential privacy models. Roughly, we classify existing literature into three lines: 1) using parameters to describe data correlation in differential privacy, 2) using models to describe data correlation in differential privacy, and 3) describing data correlation based on the framework of Pufferfish. Firstly, a detailed example is given to illustrate the issue of privacy leakage on correlated data in real scenes. Then our main work is to analyze and compare these methods, and evaluate situations that these diverse studies are applied. Finally, we propose some future challenges on correlated differential privacy.



قيم البحث

اقرأ أيضاً

Collecting and analyzing massive data generated from smart devices have become increasingly pervasive in crowdsensing, which are the building blocks for data-driven decision-making. However, extensive statistics and analysis of such data will serious ly threaten the privacy of participating users. Local differential privacy (LDP) has been proposed as an excellent and prevalent privacy model with distributed architecture, which can provide strong privacy guarantees for each user while collecting and analyzing data. LDP ensures that each users data is locally perturbed first in the client-side and then sent to the server-side, thereby protecting data from privacy leaks on both the client-side and server-side. This survey presents a comprehensive and systematic overview of LDP with respect to privacy models, research tasks, enabling mechanisms, and various applications. Specifically, we first provide a theoretical summarization of LDP, including the LDP model, the variants of LDP, and the basic framework of LDP algorithms. Then, we investigate and compare the diverse LDP mechanisms for various data statistics and analysis tasks from the perspectives of frequency estimation, mean estimation, and machine learning. Whats more, we also summarize practical LDP-based application scenarios. Finally, we outline several future research directions under LDP.
Privacy-preserving genomic data sharing is prominent to increase the pace of genomic research, and hence to pave the way towards personalized genomic medicine. In this paper, we introduce ($epsilon , T$)-dependent local differential privacy (LDP) for privacy-preserving sharing of correlated data and propose a genomic data sharing mechanism under this privacy definition. We first show that the original definition of LDP is not suitable for genomic data sharing, and then we propose a new mechanism to share genomic data. The proposed mechanism considers the correlations in data during data sharing, eliminates statistically unlikely data values beforehand, and adjusts the probability distributions for each shared data point accordingly. By doing so, we show that we can avoid an attacker from inferring the correct values of the shared data points by utilizing the correlations in the data. By adjusting the probability distributions of the shared states of each data point, we also improve the utility of shared data for the data collector. Furthermore, we develop a greedy algorithm that strategically identifies the processing order of the shared data points with the aim of maximizing the utility of the shared data. Considering the interdependent privacy risks while sharing genomic data, we also analyze the information gain of an attacker about genomes of a donors family members by observing perturbed data of the genome donor and we propose a mechanism to select the privacy budget (i.e., $epsilon$ parameter of LDP) of the donor by also considering privacy preferences of her family members. Our evaluation results on a real-life genomic dataset show the superiority of the proposed mechanism compared to the randomized response mechanism (a widely used technique to achieve LDP).
We summarize the experience of participating in two differential privacy competitions organized by the National Institute of Standards and Technology (NIST). In this paper, we document our experiences in the competition, the approaches we have used, the lessons we have learned, and our call to the research community to further bridge the gap between theory and practice in DP research.
Membership inference attacks seek to infer the membership of individual training instances of a privately trained model. This paper presents a membership privacy analysis and evaluation system, called MPLens, with three unique contributions. First, t hrough MPLens, we demonstrate how membership inference attack methods can be leveraged in adversarial machine learning. Second, through MPLens, we highlight how the vulnerability of pre-trained models under membership inference attack is not uniform across all classes, particularly when the training data itself is skewed. We show that risk from membership inference attacks is routinely increased when models use skewed training data. Finally, we investigate the effectiveness of differential privacy as a mitigation technique against membership inference attacks. We discuss the trade-offs of implementing such a mitigation strategy with respect to the model complexity, the learning task complexity, the dataset complexity and the privacy parameter settings. Our empirical results reveal that (1) minority groups within skewed datasets display increased risk for membership inference and (2) differential privacy presents many challenging trade-offs as a mitigation technique to membership inference risk.
Local Differential Privacy (LDP) is popularly used in practice for privacy-preserving data collection. Although existing LDP protocols offer high utility for large user populations (100,000 or more users), they perform poorly in scenarios with small user populations (such as those in the cybersecurity domain) and lack perturbation mechanisms that are effective for both ordinal and non-ordinal item sequences while protecting sequence length and content simultaneously. In this paper, we address the small user population problem by introducing the concept of Condensed Local Differential Privacy (CLDP) as a specialization of LDP, and develop a suite of CLDP protocols that offer desirable statistical utility while preserving privacy. Our protocols support different types of client data, ranging from ordinal data types in finite metric spaces (numeric malware infection statistics), to non-ordinal items (O
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا