ترغب بنشر مسار تعليمي؟ اضغط هنا

Kyrix-S: Authoring Scalable Scatterplot Visualizations of Big Data

139   0   0.0 ( 0 )
 نشر من قبل Wenbo Tao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Static scatterplots often suffer from the overdraw problem on big datasets where object overlap causes undesirable visual clutter. The use of zooming in scatterplots can help alleviate this problem. With multiple zoom levels, more screen real estate is available, allowing objects to be placed in a less crowded way. We call this type of visualization scalable scatterplot visualizations, or SSV for short. Despite the potential of SSVs, existing systems and toolkits fall short in supporting the authoring of SSVs due to three limitations. First, many systems have limited scalability, assuming that data fits in the memory of one computer. Second, too much developer work, e.g., using custom code to generate mark layouts or render objects, is required. Third, many systems focus on only a small subset of the SSV design space (e.g. supporting a specific type of visual marks). To address these limitations, we have developed Kyrix-S, a system for easy authoring of SSVs at scale. Kyrix-S derives a declarative grammar that enables specification of a variety of SSVs in a few tens of lines of code, based on an existing survey of scatterplot tasks and designs. The declarative grammar is supported by a distributed layout algorithm which automatically places visual marks onto zoom levels. We store data in a multi-node database and use multi-node spatial indexes to achieve interactive browsing of large SSVs. Extensive experiments show that 1) Kyrix-S enables interactive browsing of SSVs of billions of objects, with response times under 500ms and 2) Kyrix-S achieves 4X-9X reduction in specification compared to a state-of-the-art authoring system.



قيم البحث

اقرأ أيضاً

Scatterplots are one of the simplest and most commonly-used visualizations for understanding quantitative, multidimensional data. However, since scatterplots only depict two attributes at a time, analysts often need to manually generate and inspect l arge numbers of scatterplots to make sense of large datasets with many attributes. We present a visual query system for scatterplots, SCATTERSEARCH, that enables users to visually search and browse through large collections of scatterplots. Users can query for other visualizations based on a region of interest or find other scatterplots that look similar to a selected one. We present two demo scenarios, provide a system overview of SCATTERSEARCH, and outline future directions.
Next Generation Sequencing (NGS) technology has resulted in massive amounts of proteomics and genomics data. This data is of no use if it is not properly analyzed. ETL (Extraction, Transformation, Loading) is an important step in designing data analy tics applications. ETL requires proper understanding of features of data. Data format plays a key role in understanding of data, representation of data, space required to store data, data I/O during processing of data, intermediate results of processing, in-memory analysis of data and overall time required to process data. Different data mining and machine learning algorithms require input data in specific types and formats. This paper explores the data formats used by different tools and algorithms and also presents modern data formats that are used on Big Data Platform. It will help researchers and developers in choosing appropriate data format to be used for a particular tool or algorithm.
In any knowledge discovery process the value of extracted knowledge is directly related to the quality of the data used. Big Data problems, generated by massive growth in the scale of data observed in recent years, also follow the same dictate. A com mon problem affecting data quality is the presence of noise, particularly in classification problems, where label noise refers to the incorrect labeling of training instances, and is known to be a very disruptive feature of data. However, in this Big Data era, the massive growth in the scale of the data poses a challenge to traditional proposals created to tackle noise, as they have difficulties coping with such a large amount of data. New algorithms need to be proposed to treat the noise in Big Data problems, providing high quality and clean data, also known as Smart Data. In this paper, two Big Data preprocessing approaches to remove noisy examples are proposed: an homogeneous ensemble and an heterogeneous ensemble filter, with special emphasis in their scalability and performance traits. The obtained results show that these proposals enable the practitioner to efficiently obtain a Smart Dataset from any Big Data classification problem.
Big data benchmarking is particularly important and provides applicable yardsticks for evaluating booming big data systems. However, wide coverage and great complexity of big data computing impose big challenges on big data benchmarking. How can we c onstruct a benchmark suite using a minimum set of units of computation to represent diversity of big data analytics workloads? Big data dwarfs are abstractions of extracting frequently appearing operations in big data computing. One dwarf represents one unit of computation, and big data workloads are decomposed into one or more dwarfs. Furthermore, dwarfs workloads rather than vast real workloads are more cost-efficient and representative to evaluate big data systems. In this paper, we extensively investigate six most important or emerging application domains i.e. search engine, social network, e-commerce, multimedia, bioinformatics and astronomy. After analyzing forty representative algorithms, we single out eight dwarfs workloads in big data analytics other than OLAP, which are linear algebra, sampling, logic operations, transform operations, set operations, graph operations, statistic operations and sort.
In Big data era, information integration often requires abundant data extracted from massive data sources. Due to a large number of data sources, data source selection plays a crucial role in information integration, since it is costly and even impos sible to access all data sources. Data Source selection should consider both efficiency and effectiveness issues. For efficiency, the approach should achieve high performance and be scalability to fit large data source amount. From effectiveness aspect, data quality and overlapping of sources are to be considered, since data quality varies much from data sources, with significant differences in the accuracy and coverage of the data provided, and the overlapping of sources can even lower the quality of data integrated from selected data sources. In this paper, we study source selection problem in textit{Big Data Era} and propose methods which can scale to datasets with up to millions of data sources and guarantee the quality of results. Motivated by this, we propose a new object function taking the expected number of true values a source can provide as a criteria to evaluate the contribution of a data source. Based on our proposed index we present a scalable algorithm and two pruning strategies to improve the efficiency without sacrificing precision. Experimental results on both real world and synthetic data sets show that our methods can select sources providing a large proportion of true values efficiently and can scale to massive data sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا