ترغب بنشر مسار تعليمي؟ اضغط هنا

On the spectral asymptotics of waves in periodic media with Dirichlet or Neumann exclusions

331   0   0.0 ( 0 )
 نشر من قبل Othman Oudghiri-Idrissi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider homogenization of the scalar wave equation in periodic media at finite wavenumbers and frequencies, with the focus on continua characterized by: (a) arbitrary Bravais lattice in $mathbb{R}^d$, $d!geqslant!2$, and (b) exclusions i.e. voids that are subject to homogenous (Neumann or Dirichlet) boundary conditions. Making use of the Bloch wave expansion, we pursue this goal via asymptotic ansatz featuring the spectral distance from a given wavenumber-eigenfrequency pair (within the first Brillouin zone) as the perturbation parameter. We then introduce the effective wave motion via projection(s) of the scalar wavefield onto the Bloch eigenfunction(s) for the unit cell of periodicity, evaluated at the origin of a spectral neighborhood. For generality, we account for the presence of the source term in the wave equation and we consider -- at a given wavenumber -- generic cases of isolated, repeated, and nearby eigenvalues. In this way we obtain a palette of effective models, featuring both wave- and Dirac-type behaviors, whose applicability is controlled by the local band structure and eigenfunction basis. In all spectral regimes, we pursue the homogenized description up to at least first order of expansion, featuring asymptotic corrections of the homogenized Bloch-wave operator and the homogenized source term. Inherently, such framework provides a convenient platform for the synthesis of a wide range of wave phenomena in metamaterials and phononic crystals. The proposed homogenization framework is illustrated by approximating asymptotically the dispersion relationships for (i) Kagome lattice featuring hexagonal Neumann exclusions, and (ii) pinned square lattice with circular Dirichlet exclusions. We complete the numerical portrayal of analytical developments by studying the response of a Kagome lattice due to a dipole-like source term acting near the edge of a band gap.



قيم البحث

اقرأ أيضاً

We consider the Calder`on problem in an infinite cylindrical domain, whose cross section is a bounded domain of the plane. We prove log-log stability in the determination of the isotropic periodic conductivity coefficient from partial Dirichlet data and partial Neumann boundary observations of the solution.
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bs ubset mathbb{R}^d$, a bounded open set with locally Lipchitz boundary, and with $ u$ as the unit outer normal. The function $G$ is Lipschitz continuous and nondecreasing, while $k(x)$ is diagonal matrix. We show that any two weak entropy solutions $u$ and $v$ satisfy $Vert{u(t)-v(t)}Vert_{L^1(B)}le Vert{u|_{t=0}-v|_{t=0}}Vert_{L^1(B)}e^{Ct}$, for almost every $tge 0$, and a constant $C=C(k,G,B)$. If we restrict to the case when the entries $k_i$ of $k$ depend only on the corresponding component, $k_i=k_i(x_i)$, we show that there exists an entropy solution, thus establishing in this case that the problem is well-posed in the sense of Hadamard.
248 - Genqian Liu , Xiaoming Tan 2021
This paper is devoted to investigate the heat trace asymptotic expansion corresponding to the magnetic Steklov eigenvalue problem on Riemannian manifolds with boundary. We establish an effective procedure, by which we can calculate all the coefficien ts $a_0$, $a_1$, $dots$, $a_{n-1}$ of the heat trace asymptotic expansion. In particular, we explicitly give the expressions for the first four coefficients. These coefficients are spectral invariants which provide precise information concerning the volume and curvatures of the boundary of the manifold and some physical quantities by the magnetic Steklov eigenvalues.
It was recently shown that the nodal deficiency of an eigenfunction is encoded in the spectrum of the Dirichlet-to-Neumann operators for the eigenfunctions positive and negative nodal domains. While originally derived using symplectic methods, this r esult can also be understood through the spectral flow for a family of boundary conditions imposed on the nodal set, or, equivalently, a family of operators with delta function potentials supported on the nodal set. In this paper we explicitly describe this flow for a Schrodinger operator with separable potential on a rectangular domain, and determine a mechanism by which lower energy eigenfunctions do or do not contribute to the nodal deficiency.
We study a commonly-used second-kind boundary-integral equation for solving the Helmholtz exterior Neumann problem at high frequency, where, writing $Gamma$ for the boundary of the obstacle, the relevant integral operators map $L^2(Gamma)$ to itself. We prove new frequency-explicit bounds on the norms of both the integral operator and its inverse. The bounds on the norm are valid for piecewise-smooth $Gamma$ and are sharp, and the bounds on the norm of the inverse are valid for smooth $Gamma$ and are observed to be sharp at least when $Gamma$ is curved. Together, these results give bounds on the condition number of the operator on $L^2(Gamma)$; this is the first time $L^2(Gamma)$ condition-number bounds have been proved for this operator for obstacles other than balls.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا