ﻻ يوجد ملخص باللغة العربية
During their formation, emerging protoplanets tidally interact with their natal disks. Proto-gas-giant planets, with Hills radius larger than the disk thickness, open gaps and quench gas flow in the vicinity of their orbits. It is usually assumed that their type II migration is coupled to the viscous evolution of the disk. Although this hypothesis provides an explanation for the origin of close-in planets, it also encounter predicament on the retention of long-period orbits for most gas giant planets. Moreover, numerical simulations indicate that planets migrations are not solely determined by the viscous diffusion of their natal disk. Here we carry out a series of hydrodynamic simulations combined with analytic studies to examine the transition between different paradigms of type II migration. We find a range of planetary mass for which gas continues to flow through a severely depleted gap so that the surface density distribution in the disk region beyond the gap is maintained in a quasi-steady state. The associated gap profile modifies the location of corotation & Lindblad resonances. In the proximity of the planets orbit, high-order Lindblad & corotation torque are weakened by the gas depletion in the gap while low-order Lindblad torques near the gap walls preserves their magnitude. Consequently, the intrinsic surface density distribution of the disk determines delicately both pace and direction of planets type II migration. We show that this effect might stall the inward migration of giant planets and preserve them in disk regions where the surface density is steep.
Planets form in the discs of gas and dust that surround young stars. It is not known whether gas giant planets on wide orbits form the same way as Jupiter or by fragmentation of gravitationally unstable discs. Here we show that a giant planet, which
Recent observations of exoplanets by direct imaging, reveal that giant planets orbit at a few dozens to more than a hundred of AU from their central star. The question of the origin of these planets challenges the standard theories of planet formatio
We report the discovery of Kepler-432b, a giant planet ($M_b = 5.41^{+0.32}_{-0.18} M_{rm Jup}, R_b = 1.145^{+0.036}_{-0.039} R_{rm Jup}$) transiting an evolved star $(M_star = 1.32^{+0.10}_{-0.07} M_odot, R_star = 4.06^{+0.12}_{-0.08} R_odot)$ with
In this paper we search for distant massive companions to known transiting gas giant planets that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 planets obtained using the
The mass and semimajor axis distribution of gas giants in exoplanetary systems obtained by radial velocity surveys shows that super-jupiter-mass planets are piled up at > 1 au, while jupiter/sub-jupiter-mass planets are broadly distributed from ~0.03