ﻻ يوجد ملخص باللغة العربية
We use the technique of information relaxation to develop a duality-driven iterative approach to obtaining and improving confidence interval estimates for the true value of finite-horizon stochastic dynamic programming problems. We show that the sequence of dual value estimates yielded from the proposed approach in principle monotonically converges to the true value function in a finite number of dual iterations. Aiming to overcome the curse of dimensionality in various applications, we also introduce a regression-based Monte Carlo algorithm for implementation. The new approach can be used not only to assess the quality of heuristic policies, but also to improve them if we find that their duality gap is large. We obtain the convergence rate of our Monte Carlo method in terms of the amounts of both basis functions and the sampled states. Finally, we demonstrate the effectiveness of our method in an optimal order execution problem with market friction and in an inventory management problem in the presence of lost sale and lead time. Both examples are well known in the literature to be difficult to solve for optimality. The experiments show that our method can significantly improve the heuristics suggested in the literature and obtain new policies with a satisfactory performance guarantee.
This paper applies the N-block PCPM algorithm to solve multi-scale multi-stage stochastic programs, with the application to electricity capacity expansion models. Numerical results show that the proposed simplified N-block PCPM algorithm, along with
Inspired by the decomposition in the hybrid quantum-classical optimization algorithm we introduced in arXiv:1902.04215, we propose here a new (fully classical) approach to solving certain non-convex integer programs using Graver bases. This method is
A bilevel program is an optimization problem whose constraints involve another optimization problem. This paper studies bilevel polynomial programs (BPPs), i.e., all the functions are polynomials. We reformulate BPPs equivalently as semi-infinite pol
We consider stochastic programs conditional on some covariate information, where the only knowledge of the possible relationship between the uncertain parameters and the covariates is reduced to a finite data sample of their joint distribution. By ex
We derive equivalent linear and dynamic programs for infinite horizon risk-sensitive control for minimization of the asymptotic growth rate of the cumulative cost.