ترغب بنشر مسار تعليمي؟ اضغط هنا

A Large-Scale Analysis of Attacker Activity in Compromised Enterprise Accounts

221   0   0.0 ( 0 )
 نشر من قبل Neil Shah
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a large-scale characterization of attacker activity across 111 real-world enterprise organizations. We develop a novel forensic technique for distinguishing between attacker activity and benign activity in compromised enterprise accounts that yields few false positives and enables us to perform fine-grained analysis of attacker behavior. Applying our methods to a set of 159 compromised enterprise accounts, we quantify the duration of time attackers are active in accounts and examine thematic patterns in how attackers access and leverage these hijacked accounts. We find that attackers frequently dwell in accounts for multiple days to weeks, suggesting that delayed (non-real-time) detection can still provide significant value. Based on an analysis of the attackers timing patterns, we observe two distinct modalities in how attackers access compromised accounts, which could be explained by the existence of a specialized market for hijacked enterprise accounts: where one class of attackers focuses on compromising and selling account access to another class of attackers who exploit the access such hijacked accounts provide. Ultimately, our analysis sheds light on the state of enterprise account hijacking and highlights fruitful directions for a broader space of detection methods, ranging from new features that home in on malicious account behavior to the development of non-real-time detection methods that leverage malicious activity after an attacks initial point of compromise to more accurately identify attacks.



قيم البحث

اقرأ أيضاً

We set out to understand the effects of differing language on the ability of cybercriminals to navigate webmail accounts and locate sensitive information in them. To this end, we configured thirty Gmail honeypot accounts with English, Romanian, and G reek language settings. We populated the accounts with email messages in those languages by subscribing them to selected online newsletters. We hid email messages about fake bank accounts in fifteen of the accounts to mimic real-world webmail users that sometimes store sensitive information in their accounts. We then leaked credentials to the honey accounts via paste sites on the Surface Web and the Dark Web, and collected data for fifteen days. Our statistical analyses on the data show that cybercriminals are more likely to discover sensitive information (bank account information) in the Greek accounts than the remaining accounts, contrary to the expectation that Greek ought to constitute a barrier to the understanding of non-Greek visitors to the Greek accounts. We also extracted the important words among the emails that cybercriminals accessed (as an approximation of the keywords that they searched for within the honey accounts), and found that financial terms featured among the top words. In summary, we show that language plays a significant role in the ability of cybercriminals to access sensitive information hidden in compromised webmail accounts.
Individuals are gaining more control of their personal data through recent data privacy laws such the General Data Protection Regulation and the California Consumer Privacy Act. One aspect of these laws is the ability to request a business to delete private information, the so called right to be forgotten or right to erasure. These laws have serious financial implications for companies and organizations that train large, highly accurate deep neural networks (DNNs) using these valuable consumer data sets. However, a received redaction request poses complex technical challenges on how to comply with the law while fulfilling core business operations. We introduce a DNN model lifecycle maintenance process that establishes how to handle specific data redaction requests and minimize the need to completely retrain the model. Our process is based upon the membership inference attack as a compliance tool for every point in the training set. These attack models quantify the privacy risk of all training data points and form the basis of follow-on data redaction from an accurate deployed model; excision is implemented through incorrect label assignment within incremental model updates.
To investigate the status quo of SEAndroid policy customization, we propose SEPAL, a universal tool to automatically retrieve and examine the customized policy rules. SEPAL applies the NLP technique and employs and trains a wide&deep model to quickly and precisely predict whether one rule is unregulated or not.Our evaluation shows SEPAL is effective, practical and scalable. We verify SEPAL outperforms the state of the art approach (i.e., EASEAndroid) by 15% accuracy rate on average. In our experiments, SEPAL successfully identifies 7,111 unregulated policy rules with a low false positive rate from 595,236 customized rules (extracted from 774 Android firmware images of 72 manufacturers). We further discover the policy customization problem is getting worse in newer Andro
Publishing physical activity data can facilitate reproducible health-care research in several areas such as population health management, behavioral health research, and management of chronic health problems. However, publishing such data also brings high privacy risks related to re-identification which makes anonymization necessary. One of the challenges in anonymizing physical activity data collected periodically is its sequential nature. The existing anonymization techniques work sufficiently for cross-sectional data but have high computational costs when applied directly to sequential data. This paper presents an effective anonymization approach, Multi-level Clustering based anonymization to anonymize physical activity data. Compared with the conventional methods, the proposed approach improves time complexity by reducing the clustering time drastically. While doing so, it preserves the utility as much as the conventional approaches.
Modern browsers give access to several attributes that can be collected to form a browser fingerprint. Although browser fingerprints have primarily been studied as a web tracking tool, they can contribute to improve the current state of web security by augmenting web authentication mechanisms. In this paper, we investigate the adequacy of browser fingerprints for web authentication. We make the link between the digital fingerprints that distinguish browsers, and the biological fingerprints that distinguish Humans, to evaluate browser fingerprints according to properties inspired by biometric authentication factors. These properties include their distinctiveness, their stability through time, their collection time, their size, and the accuracy of a simple verification mechanism. We assess these properties on a large-scale dataset of 4,145,408 fingerprints composed of 216 attributes, and collected from 1,989,365 browsers. We show that, by time-partitioning our dataset, more than 81.3% of our fingerprints are shared by a single browser. Although browser fingerprints are known to evolve, an average of 91% of the attributes of our fingerprints stay identical between two observations, even when separated by nearly 6 months. About their performance, we show that our fingerprints weigh a dozen of kilobytes, and take a few seconds to collect. Finally, by processing a simple verification mechanism, we show that it achieves an equal error rate of 0.61%. We enrich our results with the analysis of the correlation between the attributes, and of their contribution to the evaluated properties. We conclude that our browser fingerprints carry the promise to strengthen web authentication mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا