ترغب بنشر مسار تعليمي؟ اضغط هنا

Implications of dark sector mixing on leptophilic scalar dark matter

132   0   0.0 ( 0 )
 نشر من قبل Rashidul Islam
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new viable outlook to the mixing between a singlet and a doublet leptonic dark sector fields. This choice relaxes the dark matter (DM) search constraints on the quintessential scalar singlet DM as well as presents new opportunities for its detection in the lab. The mixing produces an arbitrary mass difference between the two components of the extra doublet in a gauge-invariant way, without introducing any new scale of electroweak symmetry breaking in the theory. It also provides a useful handle to distinguish between the dark sector particles of different isospins, which is a challenging task otherwise. As the dark leptons coannihilate non-trivially, the mixing effectively enhances the viable parameter space for the relic density constraint. In low DM mass regime, our analysis shows that with a non-zero mixing, it is possible to relax the existing indirect search bounds on the upper limit of the DM-Standard Model coupling. From the analysis of the $3tau + E^{miss}_T$ and $ell,tau + E^{miss}_T$ channels for LHC at $sqrt{s} = 13$ TeV, we show that one ensures the presence of the mixing parameter between the dark sector particles of the theory by looking at the peak and tail positions of the kinematic distributions. Even with a tweak in the values of other free parameters within the viable parameter region, the distinct peak and tail positions of the kinematic distributions remains a constant feature of the model. While both the channels present us the opportunity to detect the mixing signature at the LHC/HL-LHC, the former gives better results in terms of a larger region of mixing parameter. From the fiducial cross section, the projected statistical significance for the integrated luminosity, ${mathscr L} = 3~text{ab}^{-1}$, are shown for a combined parameter region obeying all the existing constraints, where there is the best possibility to detect such a signature.



قيم البحث

اقرأ أيضاً

In this paper we study a leptophilic dark matter scenario involving feeble dark matter coupling to the Standard Model (SM) and compressed dark matter-mediator mass spectrum. We consider a simplified model where the SM is extended with one Majorana fe rmion, the dark matter, and one charged scalar, the mediator, coupling to the SM leptons through a Yukawa interaction. We first discuss the dependence of the dark matter relic abundance on the Yukawa coupling going continuously from freeze-in to freeze-out with an intermediate stage of conversion driven freeze-out. Focusing on the latter, we then exploit the macroscopic decay length of the charged scalar to study the resulting long-lived-particle signatures at collider and to explore the experimental reach on the viable portion of the parameter space.
In leptophilic scenarios, dark matter interactions with nuclei, relevant for direct detection experiments and for the capture by celestial objects, could only occur via loop-induced processes. If the mediator is a scalar or pseudo-scalar particle, wh ich only couples to leptons, the dominant contribution to dark matter-nucleus scattering would take place via two-photon exchange with a lepton triangle loop. The corresponding diagrams have been estimated in the literature under different approximations. Here, we present new analytical calculations for one-body two-loop and two-body one-loop interactions. The two-loop form factors are presented in closed analytical form in terms of generalized polylogarithms up to weight four. In both cases, we consider the exact dependence on all the involved scales, and study the dependence on the momentum transfer. We show that some previous approximations fail to correctly predict the scattering cross section by several orders of magnitude. Moreover, we show that form factors, in the range of momentum transfer relevant for local galactic dark matter, are smaller than their value at zero momentum transfer, which is usually considered.
We perform a systematic study of the phenomenology associated to models where the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet, up to n=7. If one includes only the pure gauge induced annihilation cross-sections it is know n that such particles provide good dark matter candidates, leading to the observed dark matter relic abundance for a particular value of their mass around the TeV scale. We show that these values actually become ranges of values -which we determine- if one takes into account the annihilations induced by the various scalar couplings appearing in these models. This leads to predictions for both direct and indirect detection signatures as a function of the dark matter mass within these ranges. Both can be largely enhanced by the quartic coupling contributions. We also explain how, if one adds right-handed neutrinos to the scalar doublet case, the results of this analysis allow to have altogether a viable dark matter candidate, successful generation of neutrino masses, and leptogenesis in a particularly minimal way with all new physics at the TeV scale.
As experimental searches for WIMP dark matter continue to yield null results, models beyond the WIMP paradigm have proliferated in order to elude ever improving observational constraints, among them that of sub-GeV dark matter mediated by a massive v ector portal (a dark photon) associated with a new dark $U(1)$ gauge symmetry. It has been previously noted that for a significant range of the parameter space of this class of models, the annihilation of dark matter particles into a pair of dark photons can dominate the freeze-out process even when this process is kinematically forbidden for dark matter at rest -- this is known as the forbidden dark matter (FDM) regime. Prior studies of this regime, however, assume that any dark Higgs associated with breaking the dark $U(1)$ and imparting mass to the dark photon is decoupled from the dark matter and as such plays no role in the freeze-out process. In this paper, we explore the effects of a dark Higgs on sub-GeV dark matter phenomenology in this FDM regime by considering the simplest possible construction in which there exist non-trivial dark matter-dark Higgs couplings: a model with a single complex scalar DM candidate coupled directly to the dark Higgs field. We find that for a wide range of parameter space, the dark Higgs can alter the resulting relic abundance by many orders of magnitude, and that this effect can remain significant even for a small dark matter-dark Higgs coupling constant. Considering measurements from direct detection and measurements of the CMB, we further find that points in this models parameter space which recreate the appropriate dark matter relic abundance suffer only mild constraints from other sources at present, but may become accessible in near-future direct detection experiments.
162 - Yu Cheng , Wei Liao , Qi-Shu Yan 2021
We explore the possibility that the dark matter relic density is not produced by thermal mechanism directly, but by the decay of other heavier dark sector particles which on the other hand can be produced by the thermal freeze-out mechanism. Using a concrete model with a light dark matter from dark sector decay, we study the collider signature of the dark sector particles in association with Higgs production processes. We find that the future lepton colliders can be a better place to probe the signature of this kind of light dark matter model than the hadron collider such as LHC. Meanwhile, it is found that a Higgs factory with center of mass energy 250 GeV has a better potential to resolve the signature of this kind of light dark matter model than the Higgs factory with center of mass energy 350 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا