ﻻ يوجد ملخص باللغة العربية
Training Convolutional Neural Networks (CNNs) usually requires a large number of computational resources. In this paper, textit{SparseTrain} is proposed to accelerate CNN training by fully exploiting the sparsity. It mainly involves three levels of innovations: activation gradients pruning algorithm, sparse training dataflow, and accelerator architecture. By applying a stochastic pruning algorithm on each layer, the sparsity of back-propagation gradients can be increased dramatically without degrading training accuracy and convergence rate. Moreover, to utilize both textit{natural sparsity} (resulted from ReLU or Pooling layers) and textit{artificial sparsity} (brought by pruning algorithm), a sparse-aware architecture is proposed for training acceleration. This architecture supports forward and back-propagation of CNN by adopting 1-Dimensional convolution dataflow. We have built %a simple compiler to map CNNs topology onto textit{SparseTrain}, and a cycle-accurate architecture simulator to evaluate the performance and efficiency based on the synthesized design with $14nm$ FinFET technologies. Evaluation results on AlexNet/ResNet show that textit{SparseTrain} could achieve about $2.7 times$ speedup and $2.2 times$ energy efficiency improvement on average compared with the original training process.
Deepening and widening convolutional neural networks (CNNs) significantly increases the number of trainable weight parameters by adding more convolutional layers and feature maps per layer, respectively. By imposing inter- and intra-group sparsity on
Deep convolutional networks are well-known for their high computational and memory demands. Given limited resources, how does one design a network that balances its size, training time, and prediction accuracy? A surprisingly effective approach to tr
We propose a collection of three shift-based primitives for building efficient compact CNN-based networks. These three primitives (channel shift, address shift, shortcut shift) can reduce the inference time on GPU while maintains the prediction accur
To train deep convolutional neural networks, the input data and the intermediate activations need to be kept in memory to calculate the gradient descent step. Given the limited memory available in the current generation accelerator cards, this limits
Spiking Neural Networks (SNN) are an emerging computation model, which uses event-driven activation and bio-inspired learning algorithms. SNN-based machine-learning programs are typically executed on tile- based neuromorphic hardware platforms, where