ﻻ يوجد ملخص باللغة العربية
We construct, by a procedure involving a dimensional reduction from a Chern-Simons theory with borders, an effective theory for a 1+1 dimensional superconductor. 1That system can be either in an ordinary phase or in a topological one, depending on the value of two phases, corresponding to complex order parameters. Finally, we argue that the original theory and its dimensionally reduced one can be related to the effective action for a quantum Dirac field in a slab geometry, coupled to a gauge field.
We present a class of mappings between the fields of the Cremmer-Sherk and pure BF models in 4D. These mappings are established by two distinct procedures. First a mapping of their actions is produced iteratively resulting in an expansion of the fiel
Holomorphic fields play an important role in 2d conformal field theory. We generalize them to d>2 by introducing the notion of Cauchy conformal fields, which satisfy a first order differential equation such that they are determined everywhere once we
We investigate an extension to the phase shift formalism for calculating one-loop determinants. This extension is motivated by requirements of the computation of Z-string quantum energies in D=3+1 dimensions. A subtlety that seems to imply that the v
There exist local infinitesimal redefinitions of the fermionic fields, which may be used to modify the strength of the coupling for the interaction term in massless QED3. Under those (formally unitary) transformations, the functional integration meas
We put forward a unimodular $N=1, d=4$ anti-de Sitter supergravity theory off shell. This theory, where the Cosmological Constant does not couple to gravity, has a unique maximally supersymmetric classical vacuum which is Anti-de Sitter spacetime wit