ترغب بنشر مسار تعليمي؟ اضغط هنا

From D=3 to D=2 dimensions: a note on topological order

138   0   0.0 ( 0 )
 نشر من قبل Cesar Fosco
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct, by a procedure involving a dimensional reduction from a Chern-Simons theory with borders, an effective theory for a 1+1 dimensional superconductor. 1That system can be either in an ordinary phase or in a topological one, depending on the value of two phases, corresponding to complex order parameters. Finally, we argue that the original theory and its dimensionally reduced one can be related to the effective action for a quantum Dirac field in a slab geometry, coupled to a gauge field.



قيم البحث

اقرأ أيضاً

269 - O.S. Ventura 2004
We present a class of mappings between the fields of the Cremmer-Sherk and pure BF models in 4D. These mappings are established by two distinct procedures. First a mapping of their actions is produced iteratively resulting in an expansion of the fiel ds of one model in terms of progressively higher derivatives of the other model fields. Secondly an exact mapping is introduced by mapping their quantum correlation functions. The equivalence of both procedures is shown by resorting to the invariance under field scale transformations of the topological action. Related equivalences in 5D and 3D are discussed. A cohomological argument is presented to provide consistency of the iterative mapping.
Holomorphic fields play an important role in 2d conformal field theory. We generalize them to d>2 by introducing the notion of Cauchy conformal fields, which satisfy a first order differential equation such that they are determined everywhere once we know their value on a codimension 1 surface. We classify all the unitary Cauchy fields. By analyzing the mode expansion on the unit sphere, we show that all unitary Cauchy fields are free in the sense that their correlation functions factorize on the 2-point function. We also discuss the possibility of non-unitary Cauchy fields and classify them in d=3 and 4.
We investigate an extension to the phase shift formalism for calculating one-loop determinants. This extension is motivated by requirements of the computation of Z-string quantum energies in D=3+1 dimensions. A subtlety that seems to imply that the v acuum polarization diagram in this formalism is (erroneously) finite is thoroughly investigated.
112 - C. D. Fosco 2002
There exist local infinitesimal redefinitions of the fermionic fields, which may be used to modify the strength of the coupling for the interaction term in massless QED3. Under those (formally unitary) transformations, the functional integration meas ure changes by an anomalous Jacobian, which (after regularization) yields a term with the same structure as the quadratic parity-conserving term in the effective action. Besides, the Dirac operator is affected by the introduction of new terms, apart from the modification in the minimal coupling term. We show that the result coming from the Jacobian, plus the effect of those new terms, add up to reproduce the exact quadratic term in the effective action. Finally, we also write down the form a finite decoupling transformation would have, and comment on the unlikelihood of that transformation to yield a helpful answer to the non-perturbative evaluation of the fermionic determinant.
We put forward a unimodular $N=1, d=4$ anti-de Sitter supergravity theory off shell. This theory, where the Cosmological Constant does not couple to gravity, has a unique maximally supersymmetric classical vacuum which is Anti-de Sitter spacetime wit h radius given by the equation of motion of the auxiliary scalar field, ie, $S=frac{3}{kappa L}$. However, we see that the non-supersymmetric classical vacua of the unimodular theory are Minkowski and de Sitter spacetimes as well as anti-de Sitter spacetime with radius $l eq L$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا