ترغب بنشر مسار تعليمي؟ اضغط هنا

Style Transfer for Co-Speech Gesture Animation: A Multi-Speaker Conditional-Mixture Approach

127   0   0.0 ( 0 )
 نشر من قبل Chaitanya Ahuja
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

How can we teach robots or virtual assistants to gesture naturally? Can we go further and adapt the gesturing style to follow a specific speaker? Gestures that are naturally timed with corresponding speech during human communication are called co-speech gestures. A key challenge, called gesture style transfer, is to learn a model that generates these gestures for a speaking agent A in the gesturing style of a target speaker B. A secondary goal is to simultaneously learn to generate co-speech gestures for multiple speakers while remembering what is unique about each speaker. We call this challenge style preservation. In this paper, we propose a new model, named Mix-StAGE, which trains a single model for multiple speakers while learning unique style embeddings for each speakers gestures in an end-to-end manner. A novelty of Mix-StAGE is to learn a mixture of generative models which allows for conditioning on the unique gesture style of each speaker. As Mix-StAGE disentangles style and content of gestures, gesturing styles for the same input speech can be altered by simply switching the style embeddings. Mix-StAGE also allows for style preservation when learning simultaneously from multiple speakers. We also introduce a new dataset, Pose-Audio-Transcript-Style (PATS), designed to study gesture generation and style transfer. Our proposed Mix-StAGE model significantly outperforms the previous state-of-the-art approach for gesture generation and provides a path towards performing gesture style transfer across multiple speakers. Link to code, data, and videos: http://chahuja.com/mix-stage



قيم البحث

اقرأ أيضاً

121 - Shenhan Qian , Zhi Tu , YiHao Zhi 2021
Co-speech gesture generation is to synthesize a gesture sequence that not only looks real but also matches with the input speech audio. Our method generates the movements of a complete upper body, including arms, hands, and the head. Although recent data-driven methods achieve great success, challenges still exist, such as limited variety, poor fidelity, and lack of objective metrics. Motivated by the fact that the speech cannot fully determine the gesture, we design a method that learns a set of gesture template vectors to model the latent conditions, which relieve the ambiguity. For our method, the template vector determines the general appearance of a generated gesture sequence, while the speech audio drives subtle movements of the body, both indispensable for synthesizing a realistic gesture sequence. Due to the intractability of an objective metric for gesture-speech synchronization, we adopt the lip-sync error as a proxy metric to tune and evaluate the synchronization ability of our model. Extensive experiments show the superiority of our method in both objective and subjective evaluations on fidelity and synchronization.
100 - Shifeng Pan , Lei He 2021
Cross-speaker style transfer is crucial to the applications of multi-style and expressive speech synthesis at scale. It does not require the target speakers to be experts in expressing all styles and to collect corresponding recordings for model trai ning. However, the performances of existing style transfer methods are still far behind real application needs. The root causes are mainly twofold. Firstly, the style embedding extracted from single reference speech can hardly provide fine-grained and appropriate prosody information for arbitrary text to synthesize. Secondly, in these models the content/text, prosody, and speaker timbre are usually highly entangled, its therefore not realistic to expect a satisfied result when freely combining these components, such as to transfer speaking style between speakers. In this paper, we propose a cross-speaker style transfer text-to-speech (TTS) model with explicit prosody bottleneck. The prosody bottleneck builds up the kernels accounting for speaking style robustly, and disentangles the prosody from content and speaker timbre, therefore guarantees high quality cross-speaker style transfer. Evaluation result shows the proposed method even achieves on-par performance with source speakers speaker-dependent (SD) model in objective measurement of prosody, and significantly outperforms the cycle consistency and GMVAE-based baselines in objective and subjective evaluations.
We present a method that generates expressive talking heads from a single facial image with audio as the only input. In contrast to previous approaches that attempt to learn direct mappings from audio to raw pixels or points for creating talking face s, our method first disentangles the content and speaker information in the input audio signal. The audio content robustly controls the motion of lips and nearby facial regions, while the speaker information determines the specifics of facial expressions and the rest of the talking head dynamics. Another key component of our method is the prediction of facial landmarks reflecting speaker-aware dynamics. Based on this intermediate representation, our method is able to synthesize photorealistic videos of entire talking heads with full range of motion and also animate artistic paintings, sketches, 2D cartoon characters, Japanese mangas, stylized caricatures in a single unified framework. We present extensive quantitative and qualitative evaluation of our method, in addition to user studies, demonstrating generated talking heads of significantly higher quality compared to prior state-of-the-art.
Image style transfer aims to manipulate the appearance of a source image, or content image, to share similar texture and colors of a target style image. Ideally, the style transfer manipulation should also preserve the semantic content of the source image. A commonly used approach to assist in transferring styles is based on Gram matrix optimization. One problem of Gram matrix-based optimization is that it does not consider the correlation between colors and their styles. Specifically, certain textures or structures should be associated with specific colors. This is particularly challenging when the target style image exhibits multiple style types. In this work, we propose a color-aware multi-style transfer method that generates aesthetically pleasing results while preserving the style-color correlation between style and generated images. We achieve this desired outcome by introducing a simple but efficient modification to classic Gram matrix-based style transfer optimization. A nice feature of our method is that it enables the users to manually select the color associations between the target style and content image for more transfer flexibility. We validated our method with several qualitative comparisons, including a user study conducted with 30 participants. In comparison with prior work, our method is simple, easy to implement, and achieves visually appealing results when targeting images that have multiple styles. Source code is available at https://github.com/mahmoudnafifi/color-aware-style-transfer.
Universal Neural Style Transfer (NST) methods are capable of performing style transfer of arbitrary styles in a style-agnostic manner via feature transforms in (almost) real-time. Even though their unimodal parametric style modeling approach has been proven adequate to transfer a single style from relatively simple images, they are usually not capable of effectively handling more complex styles, producing significant artifacts, as well as reducing the quality of the synthesized textures in the stylized image. To overcome these limitations, in this paper we propose a novel universal NST approach that separately models each sub-style that exists in a given style image (or a collection of style images). This allows for better modeling the subtle style differences within the same style image and then using the most appropriate sub-style (or mixtures of different sub-styles) to stylize the content image. The ability of the proposed approach to a) perform a wide range of different stylizations using the sub-styles that exist in one style image, while giving the ability to the user to appropriate mix the different sub-styles, b) automatically match the most appropriate sub-style to different semantic regions of the content image, improving existing state-of-the-art universal NST approaches, and c) detecting and transferring the sub-styles from collections of images are demonstrated through extensive experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا