ترغب بنشر مسار تعليمي؟ اضغط هنا

CelebA-Spoof: Large-Scale Face Anti-Spoofing Dataset with Rich Annotations

92   0   0.0 ( 0 )
 نشر من قبل Yuanhan Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As facial interaction systems are prevalently deployed, security and reliability of these systems become a critical issue, with substantial research efforts devoted. Among them, face anti-spoofing emerges as an important area, whose objective is to identify whether a presented face is live or spoof. Though promising progress has been achieved, existing works still have difficulty in handling complex spoof attacks and generalizing to real-world scenarios. The main reason is that current face anti-spoofing datasets are limited in both quantity and diversity. To overcome these obstacles, we contribute a large-scale face anti-spoofing dataset, CelebA-Spoof, with the following appealing properties: 1) Quantity: CelebA-Spoof comprises of 625,537 pictures of 10,177 subjects, significantly larger than the existing datasets. 2) Diversity: The spoof images are captured from 8 scenes (2 environments * 4 illumination conditions) with more than 10 sensors. 3) Annotation Richness: CelebA-Spoof contains 10 spoof type annotations, as well as the 40 attribute annotations inherited from the original CelebA dataset. Equipped with CelebA-Spoof, we carefully benchmark existing methods in a unified multi-task framework, Auxiliary Information Embedding Network (AENet), and reveal several valuable observations.



قيم البحث

اقرأ أيضاً

As facial interaction systems are prevalently deployed, security and reliability of these systems become a critical issue, with substantial research efforts devoted. Among them, face anti-spoofing emerges as an important area, whose objective is to i dentify whether a presented face is live or spoof. Recently, a large-scale face anti-spoofing dataset, CelebA-Spoof which comprised of 625,537 pictures of 10,177 subjects has been released. It is the largest face anti-spoofing dataset in terms of the numbers of the data and the subjects. This paper reports methods and results in the CelebA-Spoof Challenge 2020 on Face AntiSpoofing which employs the CelebA-Spoof dataset. The model evaluation is conducted online on the hidden test set. A total of 134 participants registered for the competition, and 19 teams made valid submissions. We will analyze the top ranked solutions and present some discussion on future work directions.
Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, existing face anti-spoofing bench marks have limited number of subjects ($le egmedspace170$) and modalities ($leq egmedspace2$), which hinder the further development of the academic community. To facilitate face anti-spoofing research, we introduce a large-scale multi-modal dataset, namely CASIA-SURF, which is the largest publicly available dataset for face anti-spoofing in terms of both subjects and modalities. Specifically, it consists of $1,000$ subjects with $21,000$ videos and each sample has $3$ modalities (i.e., RGB, Depth and IR). We also provide comprehensive evaluation metrics, diverse evaluation protocols, training/validation/testing subsets and a measurement tool, developing a new benchmark for face anti-spoofing. Moreover, we present a novel multi-modal multi-scale fusion method as a strong baseline, which performs feature re-weighting to select the more informative channel features while suppressing the less useful ones for each modality across different scales. Extensive experiments have been conducted on the proposed dataset to verify its significance and generalization capability. The dataset is available at https://sites.google.com/qq.com/face-anti-spoofing/welcome/challengecvpr2019?authuser=0
Face anti-spoofing (FAS) plays a vital role in securing the face recognition systems from presentation attacks. Most existing FAS methods capture various cues (e.g., texture, depth and reflection) to distinguish the live faces from the spoofing faces . All these cues are based on the discrepancy among physical materials (e.g., skin, glass, paper and silicone). In this paper we rephrase face anti-spoofing as a material recognition problem and combine it with classical human material perception [1], intending to extract discriminative and robust features for FAS. To this end, we propose the Bilateral Convolutional Networks (BCN), which is able to capture intrinsic material-based patterns via aggregating multi-level bilateral macro- and micro- information. Furthermore, Multi-level Feature Refinement Module (MFRM) and multi-head supervision are utilized to learn more robust features. Comprehensive experiments are performed on six benchmark datasets, and the proposed method achieves superior performance on both intra- and cross-dataset testings. One highlight is that we achieve overall 11.3$pm$9.5% EER for cross-type testing in SiW-M dataset, which significantly outperforms previous results. We hope this work will facilitate future cooperation between FAS and material communities.
Face Anti-spoofing (FAS) is a challenging problem due to complex serving scenarios and diverse face presentation attack patterns. Especially when captured images are low-resolution, blurry, and coming from different domains, the performance of FAS wi ll degrade significantly. The existing multi-modal FAS datasets rarely pay attention to the cross-domain problems under deployment scenarios, which is not conducive to the study of model performance. To solve these problems, we explore the fine-grained differences between multi-modal cameras and construct a cross-domain multi-modal FAS dataset under surveillance scenarios called GREAT-FASD-S. Besides, we propose an Attention based Face Anti-spoofing network with Feature Augment (AFA) to solve the FAS towards low-quality face images. It consists of the depthwise separable attention module (DAM) and the multi-modal based feature augment module (MFAM). Our model can achieve state-of-the-art performance on the CASIA-SURF dataset and our proposed GREAT-FASD-S dataset.
In this paper, we present a new large-scale dataset for hairstyle recommendation, CelebHair, based on the celebrity facial attributes dataset, CelebA. Our dataset inherited the majority of facial images along with some beauty-related facial attribute s from CelebA. Additionally, we employed facial landmark detection techniques to extract extra features such as nose length and pupillary distance, and deep convolutional neural networks for face shape and hairstyle classification. Empirical comparison has demonstrated the superiority of our dataset to other existing hairstyle-related datasets regarding variety, veracity, and volume. Analysis and experiments have been conducted on the dataset in order to evaluate its robustness and usability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا