ﻻ يوجد ملخص باللغة العربية
As facial interaction systems are prevalently deployed, security and reliability of these systems become a critical issue, with substantial research efforts devoted. Among them, face anti-spoofing emerges as an important area, whose objective is to identify whether a presented face is live or spoof. Though promising progress has been achieved, existing works still have difficulty in handling complex spoof attacks and generalizing to real-world scenarios. The main reason is that current face anti-spoofing datasets are limited in both quantity and diversity. To overcome these obstacles, we contribute a large-scale face anti-spoofing dataset, CelebA-Spoof, with the following appealing properties: 1) Quantity: CelebA-Spoof comprises of 625,537 pictures of 10,177 subjects, significantly larger than the existing datasets. 2) Diversity: The spoof images are captured from 8 scenes (2 environments * 4 illumination conditions) with more than 10 sensors. 3) Annotation Richness: CelebA-Spoof contains 10 spoof type annotations, as well as the 40 attribute annotations inherited from the original CelebA dataset. Equipped with CelebA-Spoof, we carefully benchmark existing methods in a unified multi-task framework, Auxiliary Information Embedding Network (AENet), and reveal several valuable observations.
As facial interaction systems are prevalently deployed, security and reliability of these systems become a critical issue, with substantial research efforts devoted. Among them, face anti-spoofing emerges as an important area, whose objective is to i
Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, existing face anti-spoofing bench
Face anti-spoofing (FAS) plays a vital role in securing the face recognition systems from presentation attacks. Most existing FAS methods capture various cues (e.g., texture, depth and reflection) to distinguish the live faces from the spoofing faces
Face Anti-spoofing (FAS) is a challenging problem due to complex serving scenarios and diverse face presentation attack patterns. Especially when captured images are low-resolution, blurry, and coming from different domains, the performance of FAS wi
In this paper, we present a new large-scale dataset for hairstyle recommendation, CelebHair, based on the celebrity facial attributes dataset, CelebA. Our dataset inherited the majority of facial images along with some beauty-related facial attribute