ترغب بنشر مسار تعليمي؟ اضغط هنا

Rest-frame UV spectroscopy of extreme [OIII] emitters at $1.3<z<3.7$: Toward a high-redshift UV reference sample for JWST

69   0   0.0 ( 0 )
 نشر من قبل Mengtao Tang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep spectroscopy of galaxies in the reionization-era has revealed intense CIII] and CIV line emission (EW $>15-20$ r{A}). In order to interpret the nebular emission emerging at $z>6$, we have begun targeting rest-frame UV emission lines in galaxies with large specific star formation rates (sSFRs) at $1.3<z<3.7$. We find that CIII] reaches the EWs seen at $z>6$ only in large sSFR galaxies with [OIII]+H$beta$ EW $>1500$ r{A}. In contrast to previous studies, we find that many galaxies with intense [OIII] have weak CIII] emission (EW $=5-8$ r{A}), suggesting that the radiation field associated with young stellar populations is not sufficient to power strong CIII]. Photoionization models demonstrate that the spread in CIII] among systems with large sSFRs ([OIII]+H$beta$ EW $>1500$ r{A}) is driven by variations in metallicity, a result of the extreme sensitivity of CIII] to electron temperature. We find that the strong CIII] emission seen at $z>6$ (EW $>15$ r{A}) requires metal poor gas ($simeq0.1 Z_odot$) whereas the weaker CIII] emission in our sample tends to be found at moderate metallicities ($simeq0.3 Z_odot$). The luminosity distribution of the CIII] emitters in our $zsimeq1-3$ sample presents a consistent picture, with stronger emission generally linked to low luminosity systems ($M_{rm{UV}}>-19.5$) where low metallicities are more likely. We quantify the fraction of strong CIII] and CIV emitters at $zsimeq1-3$, providing a baseline for comparison against $z>6$ samples. We suggest that the first UV line detections at $z>6$ can be explained if a significant fraction of the early galaxy population is found at large sSFR ($>200$ Gyr$^{-1}$) and low metallicity ($<0.1 Z_odot$).



قيم البحث

اقرأ أيضاً

We present results of optical spectroscopic observations of candidates of Lyman Break Galaxies (LBGs) at $z sim 5$ in the region including the GOODS-N and the J0053+1234 region by using GMOS-N and GMOS-S, respectively. Among 25 candidates, five objec ts are identified to be at $z sim 5$ (two of them were already identified by an earlier study) and one object very close to the color-selection window turned out to be a foreground galaxy. With this spectroscopically identified sample and those from previous studies, we derived the lower limits on the number density of bright ($M_{UV}<-22.0$ mag) LBGs at $z sim 5$. These lower limits are comparable to or slightly smaller than the number densities of UV luminosity functions (UVLFs) that show the smaller number density among $z sim 5$ UVLFs in literature. However, by considering that there remain many LBG candidates without spectroscopic observations, the number density of bright LBGs is expected to increase by a factor of two or more. The evidence for the deficiency of UV luminous LBGs with large Ly$alpha$ equivalent widths was reinforced. We discuss possible causes for the deficiency and prefer the interpretation of dust absorption.
We present the results of spectroscopy of Lyman Break Galaxies (LBGs) at z~5 in the J0053+1234 field with the Faint Object Camera and Spectrograph on the Subaru telescope. Among 5 bright candidates with z < 25.0 mag, 2 objects are confirmed to be at z~5 from their Ly alpha emission and the continuum depression shortward of Ly alpha. The EWs of Ly alpha emission of the 2 LBGs are not so strong to be detected as Ly alpha emitters, and one of them shows strong low-ionized interstellar (LIS) metal absorption lines. Two faint objects with z geq 25.0 mag are also confirmed to be at z~5, and their spectra show strong Ly alpha emission in contrast to the bright ones. These results suggest a deficiency of strong Ly alpha emission in bright LBGs at z~5, which has been discussed in our previous paper. Combined with our previous spectra of LBGs at z~5 obtained around the Hubble Deep Field-North (HDF-N), we made a composite spectrum of UV luminous (M_1400 leq -21.5 mag) LBGs at z~5. The resultant spectrum shows a weak Ly alpha emission and strong LIS absorptions which suggests that the bright LBGs at z~5 have chemically evolved at least to ~0.1 solar metallicity. For a part of our sample in the HDF-N region, we obtained near-to-mid infrared data, which constraint stellar masses of these objects. With the stellar mass and the metallicity estimated from LIS absorptions, the metallicities of the LBGs at z~5 tend to be lower than those of the galaxies with the same stellar mass at z lesssim 2, although the uncertainty is very large.
We present deep rest-frame UV spectroscopic observations using the Gran Telescopio Canarias of six gravitationally lensed Lya emitters (LAEs) at $2.36<z<2.82$ selected from the BELLS GALLERY survey. By taking the magnifications into account, we show that LAEs can be as luminous as L(Lya) = 30x10$^{42}$ erg s-1 and M(UV) = -23 (AB) without invoking an AGN component, in contrast with previous findings. We measure Lya rest-frame equivalent widths, EW(Lya), ranging from 16AA to 50AA and Lya escape fractions, fesc(Lya), from 10% to 40%. Large EW(Lya) and fesc(Lya) are found predominantly in LAEs showing weak low-ionization ISM absorption (EW < 1AA) and narrow Lya profiles (< 300 km s-1 FWHM) with their peak close (< 80 km s-1) to their systemic redshifts, suggestive of less scatter from low HI column densities that favours the escape of Lya photons. We infer stellar metallicities of Z/Zsun ~ 0.2 in almost all LAEs by comparing the P-Cygni profiles of the wind lines NV1240AA and CIV1549AA with those from stellar synthesis models. We also find a trend between M(UV) and the velocity offset of ISM absorption lines, such as the most luminous LAEs experience stronger outflows. The most luminous LAEs show star formation rates up to 180 Msun yr-1, yet they appear relatively blue ($beta$(UV) ~ -1.8 to -2.0) showing evidence of little dust attenuation (E(B-V) = 0.10-0.14). These luminous LAEs may be particular cases of young starburst galaxies that have had no time to form large amounts of dust. If so, they are ideal laboratories to study the early phase of massive star formation, stellar and dust mass growth, and chemical enrichment histories of starburst galaxies at high-z.
127 - Masataka Ando 2004
We report initial results for spectroscopic observations of candidates of Lyman Break Galaxies (LBGs) at $zsim5$ in a region centered on the Hubble Deep Field-North by using the Faint Object Camera and Spectrograph attached to the Subaru Telescope. E ight objects with $I_Cleq25.0$ mag, including one AGN, are confirmed to be at $4.5<z<5.2$. The rest-frame UV spectra of seven LBGs commonly show no or weak Lyalpha emission line (rest-frame equivalent width of 0-10AA) and relatively strong low-ionization interstellar metal absorption lines of SiII $lambda$1260, OI+SiII $lambda$1303, and CII $lambda$1334 (mean rest-frame equivalent widths of them are $-1.2 sim -5.1 $AA). These properties are significantly different from those of the mean rest-frame UV spectrum of LBGs at $zsim3$, but are quite similar to those of subgroups of LBGs at $zsim3$ with no or weak Lyalpha emission. The weakness of Lyalpha emission and strong low-ionization interstellar metal absorption lines may indicate that these LBGs at $zsim5$ are chemically evolved to some degree and have a dusty environment. Since the fraction of such LBGs at $zsim5$ in our sample is larger than that at $zsim3$, we may witness some sign of evolution of LBGs from $zsim5$ to $zsim3$, though the present sample size is very small. It is also possible, however, that the brighter LBGs tend to show no or weak Lyalpha emission, because our spectroscopic sample is bright (brighter than $L^{ast}$) among LBGs at $zsim5$. More observations are required to establish spectroscopic nature of LBGs at $zsim5$.
We present new results for a sample of 33 narrow-lined UV-selected active galactic nuclei (AGNs), identified in the course of a spectroscopic survey for star-forming galaxies at z ~ 2-3. The rest-frame UV composite spectrum for our AGN sample shows s everal emission lines characteristic of AGNs, as well as interstellar absorption features seen in star-forming Lyman Break Galaxies (LBGs). We report a detection of NIV]1486, which has been observed in high-redshift radio galaxies, as well as in rare optically-selected quasars. The UV continuum slope of the composite spectrum is significantly redder than that of a sample of non-AGN UV-selected star forming galaxies. Blueshifted SiIV absorption provides evidence for outflowing highly-ionized gas in these objects at speeds of ~ 10^(3) km/s, quantitatively different from what is seen in the outflows of non-AGN LBGs. Grouping the individual AGNs by parameters such as Ly-alpha equivalent width, redshift, and UV continuum magnitude allows for an analysis of the major spectroscopic trends within the sample. Stronger Ly-alpha emission is coupled with weaker low-ionization absorption, which is similar to what is seen in the non-AGN LBGs, and highlights the role that cool interstellar gas plays in the escape of Ly-alpha photons. However, the AGN composite does not show the same trends between Ly-alpha strength and extinction seen in the non-AGN LBGs. These results represent the first such comparison at high-redshift between star-forming galaxies and similar galaxies that host AGN activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا