ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Deep Representation Learning for Real-Time Tracking

101   0   0.0 ( 0 )
 نشر من قبل Ning Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The advancement of visual tracking has continuously been brought by deep learning models. Typically, supervised learning is employed to train these models with expensive labeled data. In order to reduce the workload of manual annotations and learn to track arbitrary objects, we propose an unsupervised learning method for visual tracking. The motivation of our unsupervised learning is that a robust tracker should be effective in bidirectional tracking. Specifically, the tracker is able to forward localize a target object in successive frames and backtrace to its initial position in the first frame. Based on such a motivation, in the training process, we measure the consistency between forward and backward trajectories to learn a robust tracker from scratch merely using unlabeled videos. We build our framework on a Siamese correlation filter network, and propose a multi-frame validation scheme and a cost-sensitive loss to facilitate unsupervised learning. Without bells and whistles, the proposed unsupervised tracker achieves the baseline accuracy as classic fully supervised trackers while achieving a real-time speed. Furthermore, our unsupervised framework exhibits a potential in leveraging more unlabeled or weakly labeled data to further improve the tracking accuracy.



قيم البحث

اقرأ أيضاً

Joint clustering and feature learning methods have shown remarkable performance in unsupervised representation learning. However, the training schedule alternating between feature clustering and network parameters update leads to unstable learning of visual representations. To overcome this challenge, we propose Online Deep Clustering (ODC) that performs clustering and network update simultaneously rather than alternatingly. Our key insight is that the cluster centroids should evolve steadily in keeping the classifier stably updated. Specifically, we design and maintain two dynamic memory modules, i.e., samples memory to store samples labels and features, and centroids memory for centroids evolution. We break down the abrupt global clustering into steady memory update and batch-wise label re-assignment. The process is integrated into network update iterations. In this way, labels and the network evolve shoulder-to-shoulder rather than alternatingly. Extensive experiments demonstrate that ODC stabilizes the training process and boosts the performance effectively. Code: https://github.com/open-mmlab/OpenSelfSup.
Inspired by the fact that human eyes continue to develop tracking ability in early and middle childhood, we propose to use tracking as a proxy task for a computer vision system to learn the visual representations. Modelled on the Catch game played by the children, we design a Catch-the-Patch (CtP) game for a 3D-CNN model to learn visual representations that would help with video-related tasks. In the proposed pretraining framework, we cut an image patch from a given video and let it scale and move according to a pre-set trajectory. The proxy task is to estimate the position and size of the image patch in a sequence of video frames, given only the target bounding box in the first frame. We discover that using multiple image patches simultaneously brings clear benefits. We further increase the difficulty of the game by randomly making patches invisible. Extensive experiments on mainstream benchmarks demonstrate the superior performance of CtP against other video pretraining methods. In addition, CtP-pretrained features are less sensitive to domain gaps than those trained by a supervised action recognition task. When both trained on Kinetics-400, we are pleasantly surprised to find that CtP-pretrained representation achieves much higher action classification accuracy than its fully supervised counterpart on Something-Something dataset. Code is available online: github.com/microsoft/CtP.
Traditional framework of discriminative correlation filters (DCF) is often subject to undesired boundary effects. Several approaches to enlarge search regions have been already proposed in the past years to make up for this shortcoming. However, with excessive background information, more background noises are also introduced and the discriminative filter is prone to learn from the ambiance rather than the object. This situation, along with appearance changes of objects caused by full/partial occlusion, illumination variation, and other reasons has made it more likely to have aberrances in the detection process, which could substantially degrade the credibility of its result. Therefore, in this work, a novel approach to repress the aberrances happening during the detection process is proposed, i.e., aberrance repressed correlation filter (ARCF). By enforcing restriction to the rate of alteration in response maps generated in the detection phase, the ARCF tracker can evidently suppress aberrances and is thus more robust and accurate to track objects. Considerable experiments are conducted on different UAV datasets to perform object tracking from an aerial view, i.e., UAV123, UAVDT, and DTB70, with 243 challenging image sequences containing over 90K frames to verify the performance of the ARCF tracker and it has proven itself to have outperformed other 20 state-of-the-art trackers based on DCF and deep-based frameworks with sufficient speed for real-time applications.
Correlation filter (CF)-based methods have demonstrated exceptional performance in visual object tracking for unmanned aerial vehicle (UAV) applications, but suffer from the undesirable boundary effect. To solve this issue, spatially regularized corr elation filters (SRDCF) proposes the spatial regularization to penalize filter coefficients, thereby significantly improving the tracking performance. However, the temporal information hidden in the response maps is not considered in SRDCF, which limits the discriminative power and the robustness for accurate tracking. This work proposes a novel approach with dynamic consistency pursued correlation filters, i.e., the CPCF tracker. Specifically, through a correlation operation between adjacent response maps, a practical consistency map is generated to represent the consistency level across frames. By minimizing the difference between the practical and the scheduled ideal consistency map, the consistency level is constrained to maintain temporal smoothness, and rich temporal information contained in response maps is introduced. Besides, a dynamic constraint strategy is proposed to further improve the adaptability of the proposed tracker in complex situations. Comprehensive experiments are conducted on three challenging UAV benchmarks, i.e., UAV123@10FPS, UAVDT, and DTB70. Based on the experimental results, the proposed tracker favorably surpasses the other 25 state-of-the-art trackers with real-time running speed ($sim$43FPS) on a single CPU.
We propose to learn a cascade of globally-optimized modular boosted ferns (GoMBF) to solve multi-modal facial motion regression for real-time 3D facial tracking from a monocular RGB camera. GoMBF is a deep composition of multiple regression models wi th each is a boosted ferns initially trained to predict partial motion parameters of the same modality, and then concatenated together via a global optimization step to form a singular strong boosted ferns that can effectively handle the whole regression target. It can explicitly cope with the modality variety in output variables, while manifesting increased fitting power and a faster learning speed comparing against the conventional boosted ferns. By further cascading a sequence of GoMBFs (GoMBF-Cascade) to regress facial motion parameters, we achieve competitive tracking performance on a variety of in-the-wild videos comparing to the state-of-the-art methods, which require much more training data or have higher computational complexity. It provides a robust and highly elegant solution to real-time 3D facial tracking using a small set of training data and hence makes it more practical in real-world applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا