ﻻ يوجد ملخص باللغة العربية
When translational symmetry is broken by bulk disorder, the topological nature of states in topological crystalline systems may change depending on the type of disorder that is applied. In this work, we characterize the phases of a one-dimensional (1D) chain with inversion and chiral symmetries, where every disorder configuration is inversion-symmetric. By using a basis-independent formulation for the inversion topological invariant, chiral winding number, and bulk polarization, we are able to construct phase diagrams for these quantities when disorder is present. We show that unlike the chiral winding number and bulk polarization, the inversion topological invariant can fluctuate when the bulk spectral gap closes at strong disorder. Using the position-space renormalization group, we are able to compare how the inversion topological invariant, chiral winding number and bulk polarization behave at low energies in the strong disorder limit. We show that with inversion symmetry-preserving disorder, the value of the inversion topological invariant is determined by the inversion eigenvalues of the states at the inversion centers, while quantities such as the chiral winding number and the bulk polarization still have contributions from every state throughout the chain. We also show that it is possible to alter the value of the inversion topological invariant in a clean system by occupying additional states at the inversion centers while keeping the bulk polarization fixed. We discuss the implications of our results for topological crystalline phases in higher-dimensional electronic systems, and in ultra-cold atomic systems.
We study spin transport in a Hubbard chain with strong, random, on--site potential and with spin--dependent hopping integrals, $t_{sigma}$. For the the SU(2) symmetric case, $t_{uparrow} =t_{downarrow}$, such model exhibits only partial many-body loc
Metallic phases have been observed in several disordered two dimensional (2d) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2d metallic phases at zero tempe
In recent experiments, time-dependent periodic fields are used to create exotic topological phases of matter with potential applications ranging from quantum transport to quantum computing. These nonequilibrium states, at high driving frequencies, ex
We demonstrate that the one-dimensional helical Majorana edges of two-dimensional time-reversal symmetric topological superconductors (class DIII) can become gapless and insulating by a combination of random edge velocity and interaction. Such a gapl
Here we study the emergence of different Symmetry-Protected Topological (SPT) phases in a spin-2 quantum chain. We consider a Heisenberg-like model with bilinear, biquadratic, bicubic, and biquartic nearest-neighbor interactions, as well as uniaxial