ترغب بنشر مسار تعليمي؟ اضغط هنا

How long is the Chaos Game?

68   0   0.0 ( 0 )
 نشر من قبل Natalia Jurga
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the 1988 textbook Fractals Everywhere M. Barnsley introduced an algorithm for generating fractals through a random procedure which he called the chaos game. Using ideas from the classical theory of covering times of Markov chains we prove an asymptotic formula for the expected time taken by this procedure to generate a $delta$-dense subset of a given self-similar fractal satisfying the open set condition.



قيم البحث

اقرأ أيضاً

We prove distributional limit theorems for the length of the largest convex minorant of a one-dimensional random walk with independent identically distributed increments. Depending on the increment law, there are several regimes with different limit distributions for this length. Among other tools, a representation of the convex minorant of a random walk in terms of uniform random permutations is utilized.
379 - Jonathan M. Fraser 2021
We provide a proof of the (well-known) result that the Poincare exponent of a non-elementary Kleinian group is a lower bound for the upper box dimension of the limit set. Our proof only uses elementary hyperbolic and fractal geometry.
The convex grabbing game is a game where two players, Alice and Bob, alternate taking extremal points from the convex hull of a point set on the plane. Rational weights are given to the points. The goal of each player is to maximize the total weight over all points that they obtain. We restrict the setting to the case of binary weights. We show a construction of an arbitrarily large odd-sized point set that allows Bob to obtain almost 3/4 of the total weight. This construction answers a question asked by Matsumoto, Nakamigawa, and Sakuma in [Graphs and Combinatorics, 36/1 (2020)]. We also present an arbitrarily large even-sized point set where Bob can obtain the entirety of the total weight. Finally, we discuss conjectures about optimum moves in the convex grabbing game for both players in general.
216 - Giorgio Mantica 2013
We study the attractor of Iterated Function Systems composed of infinitely many affine, homogeneous maps. In the special case of second generation IFS, defined herein, we conjecture that the attractor consists of a finite number of non-overlapping in tervals. Numerical techniques are described to test this conjecture, and a partial rigorous result in this direction is proven.
We prove that a minimal second countable ample groupoid has dynamical comparison if and only if its type semigroup is almost unperforated. Moreover, we investigate to what extent a not necessarily minimal almost finite groupoid has an almost unperfor ated type semigroup. Finally, we build a bridge between coarse geometry and topological dynamics by characterizing almost finiteness of the coarse groupoid in terms of a new coarsely invariant property for metric spaces, which might be of independent interest in coarse geometry. As a consequence, we are able to construct new examples of almost finite principal groupoids lacking other desirable properties, such as amenability or even a-T-menability. This behaviour is in stark contrast to the case of principal transformation groupoids associated to group actions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا