ﻻ يوجد ملخص باللغة العربية
As a part of the digital transformation, we interact with more and more intelligent gadgets. Today, these gadgets are often mobile devices, but in the advent of smart cities, more and more infrastructure---such as traffic and buildings---in our surroundings becomes intelligent. The intelligence, however, does not emerge by itself. Instead, we need both design techniques to create intelligent systems, as well as approaches to validate their correct behavior. An example of intelligent systems that could benefit smart cities are self-driving vehicles. Self-driving vehicles are continuously becoming both commercially available and common on roads. Accidents involving self-driving vehicles, however, have raised concerns about their reliability. Due to these concerns, the safety of self-driving vehicles should be thoroughly tested before they can be released into traffic. To ensure that self-driving vehicles encounter all possible scenarios, several millions of hours of testing must be carried out; therefore, testing self-driving vehicles in the real world is impractical. There is also the issue that testing self-driving vehicles directly in the traffic poses a potential safety hazard to human drivers. To tackle this challenge, validation frameworks for testing self-driving vehicles in simulated scenarios are being developed by academia and industry. In this chapter, we briefly introduce self-driving vehicles and give an overview of validation frameworks for testing them in a simulated environment. We conclude by discussing what an ideal validation framework at the state of the art should be and what could benefit validation frameworks for self-driving vehicles in the future.
The motion planners used in self-driving vehicles need to generate trajectories that are safe, comfortable, and obey the traffic rules. This is usually achieved by two modules: behavior planner, which handles high-level decisions and produces a coars
We introduce Ignition: an end-to-end neural network architecture for training unconstrained self-driving vehicles in simulated environments. The model is a ResNet-18 variant, which is fed in images from the front of a simulated F1 car, and outputs op
TextAttack is an open-source Python toolkit for adversarial attacks, adversarial training, and data augmentation in NLP. TextAttack unites 15+ papers from the NLP adversarial attack literature into a single framework, with many components reused acro
We present a novel method for testing the safety of self-driving vehicles in simulation. We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps. Instead, we directly simulate the outputs of the sel
The simulation of tactile sensation using haptic devices is increasingly investigated in conjunction with simulation and training. In this paper we explore the most popular haptic frameworks and APIs. We provide a comprehensive review and comparison