ﻻ يوجد ملخص باللغة العربية
Recent results show that features of adversarially trained networks for classification, in addition to being robust, enable desirable properties such as invertibility. The latter property may seem counter-intuitive as it is widely accepted by the community that classification models should only capture the minimal information (features) required for the task. Motivated by this discrepancy, we investigate the dual relationship between Adversarial Training and Information Theory. We show that the Adversarial Training can improve linear transferability to new tasks, from which arises a new trade-off between transferability of representations and accuracy on the source task. We validate our results employing robust networks trained on CIFAR-10, CIFAR-100 and ImageNet on several datasets. Moreover, we show that Adversarial Training reduces Fisher information of representations about the input and of the weights about the task, and we provide a theoretical argument which explains the invertibility of deterministic networks without violating the principle of minimality. Finally, we leverage our theoretical insights to remarkably improve the quality of reconstructed images through inversion.
Regional adversarial attacks often rely on complicated methods for generating adversarial perturbations, making it hard to compare their efficacy against well-known attacks. In this study, we show that effective regional perturbations can be generate
The vulnerability of deep neural networks (DNNs) to adversarial examples has drawn great attention from the community. In this paper, we study the transferability of such examples, which lays the foundation of many black-box attacks on DNNs. We revis
It is well known that deep learning models have a propensity for fitting the entire training set even with random labels, which requires memorization of every training sample. In this paper, we investigate the memorization effect in adversarial train
Adversarial training (AT) is one of the most effective strategies for promoting model robustness. However, recent benchmarks show that most of the proposed improvements on AT are less effective than simply early stopping the training procedure. This
Generative adversarial networks (GAN) have shown remarkable results in image generation tasks. High fidelity class-conditional GAN methods often rely on stabilization techniques by constraining the global Lipschitz continuity. Such regularization lea