Synthetic observations of spiral arm tracers of a simulated Milky Way analog


الملخص بالإنكليزية

Context: The Faraday rotation measure (RM) is often used to study the magnetic field strength and orientation within the ionized medium of the Milky Way. Observations indicate a RM in the spiral arms that exceeds the commonly assumed range. This raises the question of under what conditions spiral arms create such strong RM. Aims: We investigate the effect of spiral arms on Galactic RMs through shock compression of the interstellar medium (ISM). It has recently been suggested that the Sagittarius spiral arm creates a strong peak in RM where the line of sight (LOS) is tangent to the arm, and that enhanced RM follows along an intersecting LOS. We seek to understand the physical conditions that give rise to this effect and the role of viewing geometry. Methods: We apply a MHD simulation of the multi-phase ISM in a Milky Way type spiral galaxy disk in combination with radiative transfer to evaluate different tracers of spiral arm structures. For observers embedded in the disk, dust intensity, synchrotron emission and the kinematics of molecular gas observations are derived to identify spiral arm tangents. RMs are calculated through the disk and evaluated for different observer positions. The observers perspective is related to the parameters of the local bubble surrounding the observer. Results: We reproduce a scattering of tangent points for different tracers of about $6^circ$ per spiral arm similar to the Milky Way. As for the RM, the model shows that compression of the ISM and associated amplification of the magnetic field in spiral arms enhances RM by a few hundred rad $m^{-2}$ on top of the mean contribution of the disk. The arm-inter-arm contrast in RM along the LOS is approximately 10 in the inner Galaxy, fading to ~2 in the outer Galaxy. We identify a shark-fin like pattern in the RM Milky Way observations as well as the synthetic data that is characteristic for spiral arms.

تحميل البحث