ﻻ يوجد ملخص باللغة العربية
Let $Omega Subset mathbb C^n$ be a bounded strongly $m$-pseudoconvex domain ($1leq mleq n$) and $mu$ a positive Borel measure on $Omega$. We study the complex Hessian equation $(dd^c u)^m wedge beta^{n - m} = mu$ on $Omega$. First we give a sufficient condition on the measure $mu$ in terms of its domination by the $m$-Hessian capacity which guarantees the existence of a continuous solution to the associated Dirichlet problem with a continuous boundary datum. As an application, we prove that if the equation has a continuous $m$-subharmonic subsolution whose modulus of continuity satisfies a Dini type condition, then the equation has a continuous solution with an arbitrary continuous boundary datum. Moreover when the measure has a finite mass, we give a precise quantitative estimate on the modulus of continuity of the solution. One of the main steps in the proofs is to establish a new capacity estimate showing that the $m$-Hessian measure of a continuous $m$-subharmonic function on $Omega$ with zero boundary values is dominated by an explicit function of the $m$-Hessian capacity with respect to $Omega$, involving the modulus of continuity of $varphi$. Another important ingredient is a new weak stability estimate on the Hessian measure of a continuous $m$-subharmonic function.
Let $X$ be a compact Kahler manifold of dimension $n$ and $omega$ a Kahler form on $X$. We consider the complex Monge-Amp`ere equation $(dd^c u+omega)^n=mu$, where $mu$ is a given positive measure on $X$ of suitable mass and $u$ is an $omega$-plurisu
A new proof for stability estimates for the complex Monge-Amp`ere and Hessian equations is given, which does not require pluripotential theory. A major advantage is that the resulting stability estimates are then uniform under general degenerations o
Let $(X,omega)$ be a compact Kahler manifold of dimension $n$ and fix $1leq mleq n$. We prove that the total mass of the complex Hessian measure of $omega$-$m$-subharmonic functions is non-decreasing with respect to the singularity type. We then solv
The $J$-equation proposed by Donaldson is a complex Hessian quotient equation on Kahler manifolds. The solvability of the $J$-equation is proved by Song-Weinkove to be equivalent to the existence of a subsolution. It is also conjectured by Lejmi-Szek
Analytic solutions and their formal asymptotic expansions for a family of the singularly perturbed $q-$difference-differential equations in the complex domain are constructed. They stand for a $q-$analog of the singularly perturbed partial differenti