ﻻ يوجد ملخص باللغة العربية
We thoroughly explore the properties of (sub)-millimeter (mm) selected galaxies (SMGs) in the Shark semi-analytic model of galaxy formation. Compared to observations, the predicted number counts at wavelengths (lambda) 0.6-2mm and redshift distributions at 0.1-2mm, agree well. At the bright end (>1mJy), Shark galaxies are a mix of mergers and disk instabilities. These galaxies display a stacked FUV-to-FIR spectrum that agrees well with observations. We predict that current optical/NIR surveys are deep enough to detect bright (>1mJy) lambda=0.85-2mm-selected galaxies at z<5, but too shallow to detect counterparts at higher redshift. A James Webb Space Telescope 10,000s survey should detect all counterparts for galaxies with $S_{rm 0.85mm}>0.01$mJy. We predict SMGs disks contribute significantly (negligibly) to the rest-frame UV (IR). We investigate the 0<z<6 evolution of the intrinsic properties of >1mJy lambda=0.85-2mm-selected galaxies finding their: (i) stellar masses are $>10^{10.2}M_{odot}$, with the 2mm ones tracing the most massive galaxies ($>10^{11}M_{odot}$); (ii) specific star formation rates (SFR) are mildly (~3-10x) above the main sequence (MS); (iii) host halo masses are $gtrsim 10^{12.3}M_{odot}$, with 2mm galaxies tracing the most massive halos (proto-clusters); (iv) SMGs have lower dust masses ($approx 10^{8}M_{odot}$), higher dust temperatures ($approx 40-45$K) and higher rest-frame V-band attenuation (>1.5) than MS galaxies; (v) sizes decrease with redshift, from 4kpc at z=1 to <1kpc at z=4; (vi) the Carbon Monoxide line spectra of $S_{rm 0.85mm}>1$mJy sources peak at 4->3. Finally, we study the contribution of SMGs to the molecular gas and cosmic SFR density at 0<z<10, finding that >1mJy sources make a negligible contribution at z>3 and z>5, respectively, suggesting current observations have unveiled the majority of the star formation at 0<z<10.
We study the sub-mm properties of color-selected galaxies via a stacking analysis applied for the first time to interferometric data at sub-mm wavelengths. We base our study on 344 GHz ALMA continuum observations of ~20-wide fields centered on 86 sub
We exploit EAGLE, a cosmological hydrodynamical simulation, to reproduce the selection of the observed sub-millimeter (submm) galaxy population by selecting the model galaxies at $z geq 1$ with mock submm fluxes $S_{850} geq 1$ mJy. There is a reason
We present a host morphological study of 1,265 far-infrared galaxies (FIRGs) and sub-millimeter galaxies (SMGs) in the Cosmic Evolution Survey field using the F160W and F814W images obtained by the Hubble Space Telescope. The FIRGs and the SMGs are s
A significant fraction of high redshift starburst galaxies presents strong Ly alpha emission. Understanding the nature of these galaxies is important to assess the role they played in the early Universe and to shed light on the relation between the n
Formation and evolution of galaxies have been a central driving force in the studies of galaxies and cosmology. Recent studies provided a global picture of cosmic star formation history. However, what drives the evolution of star formation activities