ﻻ يوجد ملخص باللغة العربية
We delve into the connection between base $frac{3}{2}$ and the greedy partition of non-negative integers into 3-free sequences. Specifically, we find a fractal structure on strings written with digits 0, 1, and 2. We use this structure to prove that the even non-negative integers written in base $frac{3}{2}$ and then interpreted in base 3 form the Stanley cross-sequence, where the Stanley cross-sequence comprises the first terms of the infinitely many sequences that are formed by the greedy partition of non-negative integers into 3-free sequences.
We discuss properties of integers in base 3/2. We also introduce many new sequences related to base 3/2. Some sequences discuss patterns related to integers in base 3/2. Other sequence are analogues of famous base-10 sequences: we discuss powers of 3
We give a characterization of all matrices $A,B,C in mathbb{F}_{2}^{m times m}$ which generate a $(0,m,3)$-net in base $2$ and a characterization of all matrices $B,Cinmathbb{F}_{2}^{mathbb{N}timesmathbb{N}}$ which generate a $(0,2)$-sequence in base $2$.
We discuss two different systems of number representations that both can be called base 3/2. We explain how they are connected. Unlike classical fractional extension, these two systems provide a finite representation for integers. We also discuss a c
We determine the image and fibres for solvable base change.
In this study, we propose partitioned complementary sequences (CSs) where the gaps between the clusters encode information bits to achieve low peak-to-average-power ratio (PAPR) orthogonal frequency division multiplexing (OFDM) symbols. We show that