ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially resolving the chemical composition of the planet building blocks

353   0   0.0 ( 0 )
 نشر من قبل Alexis Matter
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The inner regions of protoplanetary discs (from $sim$ 0.1 to 10 au) are the expected birthplace of planets, especially telluric. In those high temperature regions, solids can experience cyclical annealing, vaporisation and recondensation. Hot and warm dusty grains emits mostly in the infrared domain, notably in N-band (8 to 13~$mu$m). Studying their fine chemistry through mid-infrared spectro-interferometry with the new VLTI instrument MATISSE, which can spatially resolve these regions, requires detailed dust chemistry models. Using radiative transfer, we derived infrared spectra of a fiducial static protoplanetary disc model with different inner disc ($< 1$ au) dust compositions. The latter were derived from condensation sequences computed at LTE for three initial $C/O$ ratios: subsolar ($C/O=0.4$), solar ($C/O=0.54$), and supersolar ($C/O=1$). The three scenarios return very different N-band spectra, especially when considering the presence of sub-micron-sized dust grains. MATISSE should be able to detect these differences and trace the associated sub-au-scale radial changes. We propose a first interpretation of N-band `inner-disc spectra obtained with the former VLTI instrument MIDI on three Herbig stars (HD142527, HD144432, HD163296) and one T Tauri star (AS209). Notably, we could associate a supersolar (`carbon-rich) composition for HD142527 and a subsolar (`oxygen-rich) one for HD1444432. We show that the inner disc mineralogy can be very specific and not related to the dust composition derived from spatially unresolved mid-infrared spectroscopy. We highlight the need for including more complex chemistry when interpreting solid-state spectroscopic observations of the inner regions of discs, and for considering dynamical aspects for future studies.



قيم البحث

اقرأ أيضاً

Geochemical and astronomical evidence demonstrate that planet formation occurred in two spatially and temporally separated reservoirs. The origin of this dichotomy is unknown. We use numerical models to investigate how the evolution of the solar prot oplanetary disk influenced the timing of protoplanet formation and their internal evolution. Migration of the water snow line can generate two distinct bursts of planetesimal formation that sample different source regions. These reservoirs evolve in divergent geophysical modes and develop distinct volatile contents, consistent with constraints from accretion chronology, thermo-chemistry, and the mass divergence of inner and outer Solar System. Our simulations suggest that the compositional fractionation and isotopic dichotomy of the Solar System was initiated by the interplay between disk dynamics, heterogeneous accretion, and internal evolution of forming protoplanets.
Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is of paramount importance to understand the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions). These data were complemented with interferometric observations of the HCO+ 1-0 and C17O 1-0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results. Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN and CS, were detected. In addition, we detected the SO 54-33 and 56-45 lines, confirming the previous tentative detection. Comparing to other T Tauris and Herbig Ae disks, AB Aur presents low HCN 3-2/HCO+ 3-2 and CN 2-1/HCN 3-2 line intensity ratios, similar to other transition disks. AB Aur is the only protoplanetary disk detected in SO thus far. Conclusions. We modeled the line profiles using a chemical model and a radiative transfer 3D code. Our model assumes a flared disk in hydrostatic equilibrium. The best agreement with observations was obtained for a disk with a mass of 0.01 Msun , Rin=110 AU, Rout=550 AU, a surface density radial index of 1.5 and an inclination of 27 deg. The intensities and line profiles were reproduced within a factor of 2 for most lines. This agreement is reasonable taking into account the simplicity of our model that neglects any structure within the disk. However, the HCN 3-2 and CN 2-1 line intensities were predicted more intense by a factor of >10. We discuss several scenarios to explain this discrepancy.
88 - S. Xu , B. Zuckerman , P. Dufour 2017
The Kuiper Belt of our solar system is a source of short-period comets that may have delivered water and other volatiles to Earth and the other terrestrial planets. However, the distribution of water and other volatiles in extrasolar planetary system s is largely unknown. We report the discovery of an accretion of a Kuiper-Belt-Object analog onto the atmosphere of the white dwarf WD 1425+540. The heavy elements C, N, O, Mg, Si, S, Ca, Fe, and Ni are detected, with nitrogen observed for the first time in extrasolar planetary debris. The nitrogen mass fraction is $sim$ 2%, comparable to that in comet Halley and higher than in any other known solar system object. The lower limit to the accreted mass is $sim$ 10$^{22}$ g, which is about one hundred thousand times the typical mass of a short-period comet. In addition, WD 1425+540 has a wide binary companion, which could facilitate perturbing a Kuiper-Belt-Object analog into the white dwarfs tidal radius. This finding shows that analogs to objects in our Kuiper Belt exist around other stars and could be responsible for the delivery of volatiles to terrestrial planets beyond
Chondrites are undifferentiated sediments of material left over from the earliest solar system and are widely considered as representatives of the unprocessed building blocks of the terrestrial planets. The chondrites, along with processed igneous me teorites, have been divided into two broad categories based upon their isotopic signatures; these have been termed the CC and NC groups and have been interpreted as reflecting their distinctive birth places within the solar system. The isotopic distinctiveness of NC and CC meteorites document limited radial-mixing in the accretionary disk. The enstatite and ordinary chondrites are NC-type and likely represent samples from inner solar system (likely $<$4 AU). Measurement and modeling of ratios of refractory lithophile elements (RLE) in enstatite chondrites establish these meteorites as the closest starting materials for the bulk of the silicate Earth and the core. Comparing chondritic and terrestrial RLE ratios demonstrate that the Bulk Silicate Earth, not the core, host the Earths inventory of Ti, Zr, Nb, and Ta, but not the full complement of V.
As host to two accreting planets, PDS 70 provides a unique opportunity to probe the chemical complexity of atmosphere-forming material. We present ALMA Band 6 observations of the PDS~70 disk and report the first chemical inventory of the system. With a spatial resolution of 0.4-0.5 ($sim$50 au), 12 species are detected, including CO isotopologues and formaldehyde, small hydrocarbons, HCN and HCO+ isotopologues, and S-bearing molecules. SO and CH3OH are not detected. All lines show a large cavity at the center of the disk, indicative of the deep gap carved by the massive planets. The radial profiles of the line emission are compared to the (sub-)mm continuum and infrared scattered light intensity profiles. Different molecular transitions peak at different radii, revealing the complex interplay between density, temperature and chemistry in setting molecular abundances. Column densities and optical depth profiles are derived for all detected molecules, and upper limits obtained for the non detections. Excitation temperature is obtained for H2CO. Deuteration and nitrogen fractionation profiles from the hydro-cyanide lines show radially increasing fractionation levels. Comparison of the disk chemical inventory to grids of chemical models from the literature strongly suggests a disk molecular layer hosting a carbon to oxygen ratio C/O>1, thus providing for the first time compelling evidence of planets actively accreting high C/O ratio gas at present time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا