ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong surface magnetic field generation in relativistic short pulse laser-plasma interaction with an applied seed magnetic field

179   0   0.0 ( 0 )
 نشر من قبل Kathleen Weichman
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While plasma often behaves diamagnetically, we demonstrate that the laser irradiation of a thin opaque target with an embedded target-transverse seed magnetic field $B_mathrm{seed}$ can trigger the generation of an order-of-magnitude stronger magnetic field with opposite sign at the target surface. Strong surface field generation occurs when the laser pulse is relativistically intense and results from the currents associated with the cyclotron rotation of laser-heated electrons transiting through the target and the compensating current of cold electrons. We derive a predictive scaling for this surface field generation, $B_mathrm{gen} sim - 2 pi B_mathrm{seed} Delta x/lambda_0$, where $Delta x$ is the target thickness and $lambda_0$ is the laser wavelength, and conduct 1D and 2D particle-in-cell simulations to confirm its applicability over a wide range of conditions. We additionally demonstrate that both the seed and surface-generated magnetic fields can have a strong impact on application-relevant plasma dynamics, for example substantially altering the overall expansion and ion acceleration from a $mu$m-thick laser-irradiated target with a kilotesla-level seed magnetic field.



قيم البحث

اقرأ أيضاً

119 - K. Jiang , C. T. Zhou , S. Z. Wu 2019
Imposing an external magnetic field in short-pulse intense laser-plasma interaction is of broad scientific interest in related plasma research areas. We propose a simple method using a virtual current layer by introducing an extra current density ter m to simulate the external magnetic field, and demonstrate it with three-dimensional particle-in-cell simulations. The field distribution and its evolution in sub-picosecond time scale are obtained. The magnetization process takes a much longer time than that of laser-plasma interaction due to plasma diamagnetism arising from collective response. The long-time evolution of magnetic diffusion and diamagnetic current can be predicted based on a simplified analytic model in combination with simulations.
We present the results of 3-dimensional kinetic simulations and theoretical studies on the formation and evolution of the current sheet in a collisionless plasma during magnetic field annihilation in the ultra-relativistic limit. Annihilation of oppo sitively directed magnetic fields driven by two laser pulses interacting with underdense plasma target is accompanied by an electromagnetic burst generation. The induced strong non-stationary longitudinal electric field accelerates charged particles within the current sheet. Properties of the laser-plasma target configuration are discussed in the context of the laboratory modeling for charged particle acceleration and gamma flash generation in astrophysics.
124 - C. Rodel , E. Eckner , J. Bierbach 2014
We report the enhancement of individual harmonics generated at a relativistic ultra-steep plasma vacuum interface. Simulations show the harmonic emission to be due to the coupled action of two high velocity oscillations -- at the fundamental $omega_L $ and at the plasma frequency $omega_P$ of the bulk plasma. The synthesis of the enhanced harmonics can be described by the reflection of the incident laser pulse at a relativistic mirror oscillating at $omega_L$ and $omega_P$.
160 - Suo Tang , Naveen Kumar 2018
We develop an analytical model for ultraintense attosecond pulse emission in the highly relativistic laser-plasma interaction. In this model, the attosecond pulse is emitted by a strongly compressed electron layer around the instant when the layer tr ansverse current changes the sign and its longitudinal velocity approaches the maximum. The emitted attosecond pulse has a broadband exponential spectrum and a stabilized constant spectral phase $psi(omega)=pmpi/2-psi_{A_m}$. The waveform of the attosecond pulse is also given explicitly, to our knowledge, for the first time. We validate the analytical model via particle-in-cell (PIC) simulations for both normal and oblique incidence. Based on this model, we highlight the potential to generate an isolated ultraintense phase-stabilized attosecond pulse
We report a laser-plasma experiment that was carried out at the LMJ-PETAL facility and realized the first magnetized, turbulent, supersonic plasma with a large magnetic Reynolds number ($mathrm{Rm} approx 45$) in the laboratory. Initial seed magnetic fields were amplified, but only moderately so, and did not become dynamically significant. A notable absence of magnetic energy at scales smaller than the outer scale of the turbulent cascade was also observed. Our results support the notion that moderately supersonic, low-magnetic-Prandtl-number plasma turbulence is inefficient at amplifying magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا