ترغب بنشر مسار تعليمي؟ اضغط هنا

A recursion-free functional approximation for the dynamic inventory problem

58   0   0.0 ( 0 )
 نشر من قبل Onur Kilic
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the dynamic inventory problem with non-stationary demands. It has long been known that non-stationary (s, S) policies are optimal for this problem. However, finding optimal policy parameters remains a computational challenge as it requires solving a large-scale stochastic dynamic program. To address this, we devise a recursion-free approximation for the optimal cost function of the problem. This enables us to compute policy parameters heuristically, without resorting to a stochastic dynamic program. The heuristic is easy-to-understand and -use since it follows by elementary methods of convex minimization and shortest paths, yet it is very effective and outperforms earlier heuristics.



قيم البحث

اقرأ أيضاً

Recent developments in urbanization and e-commerce have pushed businesses to deploy efficient systems to decrease their supply chain cost. Vendor Managed Inventory (VMI) is one of the most widely used strategies to effectively manage supply chains wi th multiple parties. VMI implementation asks for solving the Inventory Routing Problem (IRP). This study considers a multi-product multi-period inventory routing problem, including a supplier, set of customers, and a fleet of heterogeneous vehicles. Due to the complex nature of the IRP, we developed a Modified Adaptive Genetic Algorithm (MAGA) to solve a variety of instances efficiently. As a benchmark, we considered the results obtained by Cplex software and an efficient heuristic from the literature. Through extensive computational experiments on a set of randomly generated instances, and using different metrics, we show that our approach distinctly outperforms the other two methods.
Companies require modern capital assets such as wind turbines, trains and hospital equipment to experience minimal downtime. Ideally, assets are maintained right before failure to ensure maximum availability at minimum maintenance costs. To this end, two challenges arise: failure times of assets are unknown a priori and assets can be part of a larger asset network. Nowadays, it is common for assets to be equipped with real-time monitoring that emits alerts, typically triggered by the first signs of degradation. Thus, it becomes crucial to plan maintenance considering information received via alerts, asset locations and maintenance costs. This problem is referred to as the Dynamic Traveling Maintainer Problem with Alerts (DTMPA). We propose a modeling framework for the DTMPA, where the alerts are early and imperfect indicators of failures. The objective is to minimize discounted maintenance costs accrued over an infinite time horizon. We propose three methods to solve this problem, leveraging different information levels from the alert signals. The proposed methods comprise various greedy heuristics that rank assets based on proximity, urgency and economic risk; a Traveling Maintainer Heuristic employing combinatorial optimization to optimize near-future costs; a Deep Reinforcement Learning (DRL) method trained to minimize the long-term costs using exclusively the history of alerts. In a simulated environment, all methods can approximate optimal policies with access to perfect condition information for small asset networks. For larger networks, where computing the optimal policy is intractable, the proposed methods yield competitive maintenance policies, with DRL consistently achieving the lowest costs.
In this paper, we consider multi-stage stochastic optimization problems with convex objectives and conic constraints at each stage. We present a new stochastic first-order method, namely the dynamic stochastic approximation (DSA) algorithm, for solvi ng these types of stochastic optimization problems. We show that DSA can achieve an optimal ${cal O}(1/epsilon^4)$ rate of convergence in terms of the total number of required scenarios when applied to a three-stage stochastic optimization problem. We further show that this rate of convergence can be improved to ${cal O}(1/epsilon^2)$ when the objective function is strongly convex. We also discuss variants of DSA for solving more general multi-stage stochastic optimization problems with the number of stages $T > 3$. The developed DSA algorithms only need to go through the scenario tree once in order to compute an $epsilon$-solution of the multi-stage stochastic optimization problem. As a result, the memory required by DSA only grows linearly with respect to the number of stages. To the best of our knowledge, this is the first time that stochastic approximation type methods are generalized for multi-stage stochastic optimization with $T ge 3$.
100 - Thomas Bosman , Neil Olver 2019
We give new approximation algorithms for the submodular joint replenishment problem and the inventory routing problem, using an iterative rounding approach. In both problems, we are given a set of $N$ items and a discrete time horizon of $T$ days in which given demands for the items must be satisfied. Ordering a set of items incurs a cost according to a set function, with properties depending on the problem under consideration. Demand for an item at time $t$ can be satisfied by an order on any day prior to $t$, but a holding cost is charged for storing the items during the intermediate period; the goal is to minimize the sum of the ordering and holding cost. Our approximation factor for both problems is $O(log log min(N,T))$; this improves exponentially on the previous best results.
This paper discusses the odds problem, proposed by Bruss in 2000, and its variants. A recurrence relation called a dynamic programming (DP) equation is used to find an optimal stopping policy of the odds problem and its variants. In 2013, Buchbinder, Jain, and Singh proposed a linear programming (LP) formulation for finding an optimal stopping policy of the classical secretary problem, which is a special case of the odds problem. The proposed linear programming problem, which maximizes the probability of a win, differs from the DP equations known for long time periods. This paper shows that an ordinary DP equation is a modification of the dual problem of linear programming including the LP formulation proposed by Buchbinder, Jain, and Singh.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا