Symplectic Microgeometry IV: Quantization


الملخص بالإنكليزية

We construct a special class of semiclassical Fourier integral operators whose wave fronts are symplectic micromorphisms. These operators have very good properties: they form a category on which the wave front map becomes a functor into the cotangent microbundle category, and they admit a total symbol calculus in terms of symplectic micromorphisms enhanced with half-density germs. This new operator category encompasses the semi-classical pseudo-differential calculus and offers a functorial framework for the semi-classical analysis of the Schrodinger equation. We also comment on applications to classical and quantum mechanics as well as to a functorial and geometrical approach to the quantization of Poisson manifolds.

تحميل البحث