ﻻ يوجد ملخص باللغة العربية
In the context of holography, entanglement entropy can be studied either by i) extremal surfaces or ii) bit threads, i.e., divergenceless vector fields with a norm bound set by the Planck length. In this paper we develop a new method for metric reconstruction based on the latter approach and show the advantages over existing ones. We start by studying general linear perturbations around the vacuum state. Generic thread configurations turn out to encode the information about the metric in a highly nonlocal way, however, we show that for boundary regions with a local modular Hamiltonian there is always a canonical choice for the perturbed thread configurations that exploits bulk locality. To do so, we express the bit thread formalism in terms of differential forms so that it becomes manifestly background independent. We show that the Iyer-Wald formalism provides a natural candidate for a canonical local perturbation, which can be used to recast the problem of metric reconstruction in terms of the inversion of a particular linear differential operator. We examine in detail the inversion problem for the case of spherical regions and give explicit expressions for the inverse operator in this case. Going beyond linear order, we argue that the operator that must be inverted naturally increases in order. However, the inversion can be done recursively at different orders in the perturbation. Finally, we comment on an alternative way of reconstructing the metric non-perturbatively by phrasing the inversion problem as a particular optimization problem.
Quantum corrections to holographic entanglement entropy require knowledge of the bulk quantum state. In this paper, we derive a novel dual prescription for the generalized entropy that allows us to interpret the leading quantum corrections in a geome
We revisit the recent reformulation of the holographic prescription to compute entanglement entropy in terms of a convex optimization problem, introduced by Freedman and Headrick. According to it, the holographic entanglement entropy associated to a
In AdS/CFT, the non-uniqueness of the reconstructed bulk from boundary subregions has motivated the notion of code subspaces. We present some closely related structures that arise in flat space. A useful organizing idea is that of an $asymptotic$ cau
We propose an extension of the BMS group, which we refer to as Weyl BMS or BMSW for short, that includes, besides super-translations, local Weyl rescalings and arbitrary diffeomorphisms of the 2d sphere metric. After generalizing the Barnich-Troessae
We develop the covariant phase space formalism allowing for non-vanishing flux, anomalies and field dependence in the vector field generators. We construct a charge bracket that generalizes the one introduced by Barnich and Troessaert and includes co